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Key ingredient in BigData and IoT: Distributed Storage

• Distributed storage using coding techniques:1

- data is encoded by an [n, k] linear code, and then distributed and stored
across n storage servers

⇒ a coded distributed storage systems (DSSs)

• Coded DSSs can be made reliable, robust, efficient, and secure

- E.g., locally repairable codes (LRCs)

1 A. G. Dimakis, K. Ramchandran, Y. Wu, and C. S. Suh, “A survey on network codes for distributed storage,” Proc. IEEE,
vol. 99, no. 3, pp. 476–489, Mar. 2011.
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Coded Data in DSSs

Data consists of M files, file index m ∈ {1, . . . ,M} ≜ [1 : M], and each file X(m) has
size/length β (file size or subpacketization)
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Coded Data in DSSs

• Replicated data:
– using an [n, 1] repetition code to encode the data

– each server stores all the files: high storage overhead!

• MDS-coded data:
– using an [n, k] MDS code to encode the data

– k-out-of-n property: the data can be retrieved from any subset of k servers

• linear-coded data:
– using an arbitrary [n, k] linear code to encode the data

– LRCs are (in general) not MDS codes
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Private Information Retrieval (PIR) for Distributed Storage
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to request M ∈ [M]

• M : uniformly distributed
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back to the user

??? ???
?
?
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^—̂• [Strong Privacy]
M ⊥⊥ (Ql,Al)

• [Perfect Retrievability]
H(X(M)|A[n],Q[n],M) = 0
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PIR: Upload
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PIR: Download
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Requirements of PIR
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Information-Theoretic PIR
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Influential Previous Work

n-server
PIR scheme

PIR for
coded data

PIR for
MDS-coded data

PIR capacity for
replicated data

Chor, Goldreich, Kushilevitz, Sudan (1995):
• PIR schemes were firstly studied in the computer science community

• PIR for replicated data (2 servers) was proposed
• in the case of a single server, the solution is to download the entire data

• The efficiency of a classical PIR scheme is measured by the total amount of
communication, i.e., the sum of the upload and download cost
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Influential Previous Work

n-server
PIR schemes

PIR for
coded data

PIR for
MDS-coded data

PIR capacity for
replicated data

Chan, Ho, Yamamoto (2015):
• Started an information-theoretic re-formulation for PIR schemes in distributed

storage systems (DSSs)

• Upload cost ≪ download cost when the file size is very large

• Efficiency: PIR rate R ≡ file size (β symbols)
expected total number of downloaded symbols

only the download cost is considered!!!
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Influential Previous Work

n-server
PIR schemes

PIR for
coded data

PIR for
MDS-coded data

PIR capacity for
replicated data

Tajeddine and El Rouayheb (Feb. 2016):
• A practical PIR scheme for DSSs was proposed, where the data is encoded by an
[n, k] maximum distance separable (MDS) code CMDS

• The PIR rate is independent of the number of files: a file-independent scheme

R(CMDS) = 1− k

n
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Influential Previous Work

n-server
PIR schemes

PIR for
coded data

PIR for
MDS-coded data

PIR capacity for
replicated data

Sun and Jafar (Feb. 2016):
• A Shannon-theoretic re-formulation of PIR

• the concept of PIR capacity was firstly introduced

• PIR capacity C ≡ maximum possible PIR rate over all PIR schemes

• The PIR capacity for replicated data is achieved by a file-dependent scheme

CM,PIR ≜
1− 1

n

1−
(

1
n

)M
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Channel Capacity vs. PIR Capacity

• Channel capacity. Pe → 0 as the code blocklength n → ∞
• Achievability: What is the transmission rate that a coding scheme can

achieve (lower bound)?

• Converse: What is the maximum possible transmission rate that a coding
scheme can achieve (upper bound)?

• PIR capacity. Ensure privacy and correctness (zero error) as the file size β → ∞
• Achievability: What is the PIR rate that a PIR scheme can achieve (lower

bound)?

• Converse: What is the maximum possible PIR rate that a PIR scheme can
achieve (upper bound)?
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Influential Previous Work

n-server
PIR schemes

PIR for
coded data

PIR for
MDS-coded data

PIR capacity for
replicated data

PIR capacity for
MDS-coded data

Banawan and Ulukus (Sep. 2016):
• The PIR capacity for an [n, k] MDS-coded data (MDS-PIR capacity) is equal to

C
[n,k]
M ≜

1− k
n

1−
(
k
n

)M

↘ 1− k

n
as M → ∞

PIR rate of the file-independent scheme proposed by Tajeddine and El Rouayheb

asymptotic
MDS-PIR
capacity
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A PIR Scheme Using Subpacketization [Shah et al. 2014]:
n Servers, β = n− 1

Data is encoded by an [n, 1] repetition code with β = n− 1

Server 1 Server 2 · · · Server n

X(1) X(1) · · · X(1)

X(2) X(2) · · · X(2)

...
... · · ·

X(m) X(m) · · · X(m)

...
...

...
...

X(M) X(M) · · · X(M)

X
(m)
1,1

X
(m)
2,1

...

X
(m)
n−1,1

X(m): β = (n− 1) · 1
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A PIR Scheme Using Subpacketization [Shah et al. 2014]:
n Servers, β = n− 1

• To retrieve X(m) =
[
X

(m)
1,1 , . . . , X

(m)
n−1,1

]T of size n− 1

• Pick a random vector U = (U1,1, . . . , U1,n−1, U2,1, . . . , UM,(n−1)) with
i.i.d. entries ∼ Uniform(GF(2))

• Queries: Send U to Server 1, send U + e(m−1)·(n−1)+1 to Server 2,..., and send
U + e(m−1)·(n−1)+(n−1) to Server n

• Answers:
A1 =

∑M
m′=1

∑n−1
j=1 Um′,jX

(m′)
j,1 , A2 =

∑M
m′=1

∑n−1
j=1 Um′,jX

(m′)
j,1 +X

(m)
1,1 · · ·

An =
∑M

m′=1

∑n−1
j=1 Um′,jX

(m′)
j,1 +X

(m)
n−1,1

• Retrievability: (A1 +A2,A1 +A3, . . . ,A1 +An) −→ X(m)

• R = (n−1)·1
n = 1− 1

n
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The PIR Capacity-Achieving Scheme for Replicated Data

• For any given number of files M, none of previously mentioned schemes achieves
the maximum possible PIR rate (the PIR capacity)
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• the minimum upload cost of all possible PIR capacity-achieving linear PIR
schemes is equal to
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The PIR Scheme with Any Number of Files for Coded Data

We propose a PIR scheme for linear-coded data with any number of files:
• It reduces to the PIR capacity-achieving scheme for replicated data, i.e., the

Sun-Jafar Scheme, 2016

• It reduces to the MDS-PIR capacity-achieving scheme for MDS-coded data, i.e.,
the Banawan-Ulukus Scheme, 2016

• It achieves the MDS-PIR capacity for a particular class of non-MDS storage codes

• those codes are referred to as MDS-PIR capacity-achieving codes

• a generalization of the Sun-Jafar scheme and Banawan-Ulukus scheme
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Review: Information-Theoretic PIR

X(1)

... · · ·

1 2 n

User

X(M)

Q1 Q2 Qn

A1

A2

An

??? ???
?
?

^—̂

??? ???
?
?

^—̂• [Strong Privacy]
M ⊥⊥ (Ql,Al)

• [Perfect Retrievability]
H(X(M)|A[n],Q[n],M) = 0
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Retrievability: Use Information Sets

X
(m)
1,1 X

(m)
1,2 · · · X

(m)
1,k

X
(m)
2,1 X

(m)
2,2 · · · X

(m)
2,k

...
... · · ·

...

X
(m)
β′,1 X

(m)
β′,2 · · · X

(m)
β′,k

C
(m)
1,1 C

(m)
1,2 · · · C

(m)
1,n

C
(m)
2,1 C

(m)
2,2 · · · C

(m)
2,n

...
... · · ·

...

C
(m)
β′,1 C

(m)
β′,2 · · · C

(m)
β′,n

C(m) : β = β′ × nX(m) : β = β′ × k

β′

k

Goal: reconstruct all β′ stripes of X(m)
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Goal: reconstruct all β′ stripes of X(m)

a linear [n, k] storage code C

(C
(m)
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recover

• Information set: a set I = {j1, . . . , jk} ⊆ [1 : n] such that the code symbols
(Cj1 , Cj2 , . . . , Cjk) determine the k information symbols
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MDS-PIR Capacity-Achieving Codes

• For any [n, k] code C , one can always find two parameters ν and κ such that
• each coordinate j ∈ [1 : n] appears exactly κ times in ν sets {Si}νi=1
• each set Si contains an inforamtion set of C

• An [n, k] code C ∗ (not necessarily be MDS) is called an MDS-PIR
capacity-achieving code if
• ∃ ν, κ such that κ

ν = k
n

• Theorem. The PIR rate R
(
C ∗) = C

[n,k]
M is achievable

• There exist n information sets {Ii}ni=1 of CMDS such that each coordinate
j ∈ [1 : n] appears exactly k times in the collection {Ii}ni=1

• CMDS ⊂ C ∗ : (ν, κ) = (n, k)
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MDS-PIR Capacity-Achieving Codes

• Theorem. The PIR capacity for MDS-PIR capacity-achieving codes is
equal to the MDS-PIR capacity C

[n,k]
M

• The first family of non-MDS codes for which the PIR capacity is known

• Only the PIR capacity of non-MDS-PIR capacity-achieving codes is not yet
determined!
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Example: An MDS-PIR Capacity-Achieving [5, 3, 2] Code

• Consider a [5, 3, 2] binary non-MDS code C with generator matrix

G =

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1



• There exist 5 information sets of C such that ((ν, κ) = (5, 3))

information sets code coordinates
S1 = I1 1 2 3

S2 = I2 1 4 5

S3 = I3 2 4 5

S4 = I4 2 3 4

S5 = I5 1 3 5

Stack
code coordinates
1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
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Example: A Non-MDS-PIR Capacity-Achieving [5, 3, 2] Code

• Consider a [5, 3, 2] binary non-MDS code C ′ with generator matrix

G′ =

1 0 0 1 0
0 1 0 1 0
0 0 1 0 1



• We can only find 3 sets of C ′ and each conatins an information set, such that

information sets sets code coordinates
I ′
1 = {2, 3, 4} S ′

1 2 3 4 5

I ′
2 = {1, 4, 5} S ′

2 1 4 5

I ′
3 = {1, 2, 3} S ′

3 1 2 3

Stack
code coordinates
1 2 3 4 5

1 2 3 4 5

(ν, κ) = (3, 2)
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Symmetric vs. Asymmetric PIR Protocols

• Consider the binary [5, 3, 2] non-MDS-PIR capacity-achieving code C ′

• Define the interference symbols: Ih,l ≜ uT
hcl, h ∈ N, l ∈ [1 : n]

• u is a vector of length βM with i.i.d. uniformly distributed components

• Symmetric Protocol: H(A1) = · · · = H(A5) = 2 G′ =
(

1 0 0 1 0
0 1 0 1 0
0 0 1 0 1

)
Responses Server 1 Server 2 Server 3 Server 4 Server 5

H(Al)
I1,1 + x

(m)
1,1 I1,2 I1,3 I1,4 I1,5

I2,1 I2,2 + x
(m)
1,2 I2,3 + x

(m)
1,3 I2,4 I2,5
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Symmetric vs. Asymmetric PIR Protocols

• Theorem (Symmetric Protocol). The PIR rate

RM, S(C ) =
(ν − κ)k
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Asymmetry Helps for Non-MDS-PIR Capacity-Achieving Codes

• Theorem (Asymmetric Protocol A). The PIR rate

RM,A(C ) ≜
(
1− κ

ν

)[
1−

(κ
ν

)M
]−1

is achievable

• It can be shown that RM, S(C ) < RM,A(C ) for any given ν and κ
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Asymmetric Protocol for a Special Class of Codes

• Consider the [5, 3, 2] binary non-MDS code C ′ with generator matrix

G′ =

1 0 0 1 0
0 1 0 1 0
0 0 1 0 1


1 2 3 4 5

• Decompose G′ into G′
1 =

(
1 0 1
0 1 1
0 0 0

)
and G′

2 =
(

0 0
0 0
1 1

)
:

Protocol B:
Responses Server 1 Server 2 Server 3 Server 4 Server 5

H(Al)
I1,1 + x

(m)
1,1 I1,2 I1,3 I1,4 I1,5

I2,1 I2,2 + x
(m)
1,2 I2,3 + x

(m)
1,3 I2,4 I2,5
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Asymmetric Protocol for a Special Class of Codes

• If the generator matrix G of a non-MDS-PIR capacity-achieving code CDS has the
structure (n =

∑P
p=1 np, k =

∑P
p=1 kp, Gp: size kp × np)

G =

 G1
G2

. . .
GP

, C Gp : [np, kp] MDS-PIR capacity-achieving codes with Gp

(a direct sum of MDS-PIR capacity-achieving codes)

• Theorem (Asymmetric Protocol B). The PIR rate

RM,B(CDS) ≜

 P∑
p=1

kp
k

(
C
[np,kp]
M

)−1

−1

is achievable

• If such code exists, then one can show that RM,A(CDS) < RM,B(CDS)
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Take Home Messages

all linear codes C

direct sum of MDS-PIR capacity-achieving codes

MDS-PIR
capacity-achieving codes

CMDS-PIR

cyclic codes

Reed-Muller codes

a class of distance-optimal LRCs
non-MDS-PIR capacity-achieving codes
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Take Home Messages

all linear codes C

direct sum of MDS-PIR capacity-achieving codes

MDS-PIR
capacity-achieving codes

CMDS-PIR

cyclic codes

Reed-Muller codes

a class of distance-optimal LRCs
non-MDS-PIR capacity-achieving codes

=⇒ PIR capacity???

• For codes that cannot be decomposed into a direct sum of MDS-PIR
capacity-achieving codes, the PIR capacity is still unknown...
• a code-dependent, but file-independent asymmetric protocol is also proposed
• Protocol A could still be improved

Hsuan-Yin Lin, Simula UiB 22



Take Home Messages

all linear codes C
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MDS-PIR
capacity-achieving codes

CMDS-PIR

cyclic codes

Reed-Muller codes

a class of distance-optimal LRCs
non-MDS-PIR capacity-achieving codes

=⇒ PIR capacity???

• Open Problem 1: What is the PIR capacity for non-MDS encoded data?
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Take Home Messages

all linear codes C

direct sum of MDS-PIR capacity-achieving codes

MDS-PIR
capacity-achieving codes

CMDS-PIR

cyclic codes

Reed-Muller codes

a class of distance-optimal LRCs
non-MDS-PIR capacity-achieving codes

=⇒ PIR capacity???

• Open Problem 2: Is C
[n,k]
M the limit for any [n, k] linear-coded DSS?

- So far, no [n, k] non-MDS-PIR capacity-achieving code gives a strictly larger
PIR rate than C

[n,k]
M
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Take Home Messages

all linear codes C

direct sum of MDS-PIR capacity-achieving codes

MDS-PIR
capacity-achieving codes

CMDS-PIR

cyclic codes

Reed-Muller codes

a class of distance-optimal LRCs
non-MDS-PIR capacity-achieving codes

=⇒ PIR capacity???

• Asymmetric PIR protocols could be needed for a coded DSS using non-MDS-PIR
capacity-achieving codes
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