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� Goal:

Bring the quantum adversary method under

common general settings.
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� Usual Adversary Tight characterization of quantum query

complexity in normal settings:

� Input: encodes a string x as a unitary

Ox : |i〉|0〉 7→ |i〉|xi〉;

� Output: evaluates a function f(x) when measured.
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� “Variations” Adversary Semi-tight characterization when

� Input: arbitrary unitary Ox;

� Output: arbitrary unitary Vx.

From this, you can derive other versions:

� State conversion, state preparation, relation evaluation, . . .
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Can this new method be used for real

problems?
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� Old and well-known problem:

� Given a subset x ⊆ [n],
� find |x| with multiplicative precision ε.

� Can be done in O

(
1
ε

√
n
|x|

)
queries assuming membership

access to x:

Brassard, Høyer, and Tapp (1998).

� And this is optimal

Bennett, Bernstein, Brassard, and Vazirani (1997).
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� Old and well-known problem:

� Given a subset x ⊆ [n],
� find |x| with multiplicative precision ε.

� distinguish two cases

� |x| = k, or

� |x| = k′ = (1 + ε)k.

� Can be done in O

(
1
ε

√
n
|x|

)
queries assuming membership

access to x:

Brassard, Høyer, and Tapp (1998).

� And this is optimal

Bennett, Bernstein, Brassard, and Vazirani (1997).
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� Membership oracle is good, but too classique.

� Let us have more quantum resources.
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� Membership oracle is good, but too classique.

� Let us have more quantum resources.

What can be more quantum than this

|ψx〉 =
1√
|x|
∑

i∈x

|i〉 ?
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� Can have copies of

� Can reflect about
|ψx〉 =

1√
|x|
∑

i∈x

|i〉.

Theorem. Assume ε = 1. Then the algorithm either has to

� invoke the membership oracle Ω
(√

n/k
)

times, or

� access the state |ψx〉 at least Ω
(
min{k1/3,

√
n/k}

)
times.
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Assume ε = 1...

We consider all 1/k ≤ ε ≤ 1.
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Assume ε = 1...

We consider all 1/k ≤ ε ≤ 1.

� Can have copies of

� Can reflect about
|ψx〉 =

1√
|x|
∑

i∈x

|i〉.

We add state-generating oracle: |0〉 7→ |ψx〉.

State-generating
oracle

Copy of
the state

Reflecting
oracle



Copies of the state ℓ = Ω

(
min

{
k,

√
k

ε
,
n

kε2

})

Membership oracle qM = Ω

(
1

ε

√
n

k

)

State-generating oracle qG = Ω

(
min

{
1

ε

√
n

k
,

k1/3

ε2/3

})

• with copies of the state qG
√
ℓ = Ω

(√
k

ε

)

Reflecting oracle qR = Ω

(
min

{
1

ε

√
n

k
,

√
k

ε
+

√
n

k

})

• with copies of the state

or state-generating oracle
qR
√
ℓ+ qG = Ω

(√
k

ε

)

• with copies of the state

or state-generating oracle
qR = Ω

(√
k

ε

)
and ℓ+ qG ≥ 1

• with membership oracle: qR = Ω

(√
k

ε

)
and qM = Ω

(√
n

k

)
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This is
tight!
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Proposition. It is possible to solve the approximate counting

problem using O(k log k) classical samples from x.

Proof. Sample the elements out of x sufficiently many times.

Output that |x| = k if the number of distinct elements observed is

at most k, otherwise output that |x| = k′.
The algorithm has 1-sided error.

The analysis follows from the standard coupon collecting problem.

� This is the only place where we are tight only up to a log.
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Proposition. It is possible to solve the approximate counting

problem using any of the following input oracles O
(

1
ε

√
n
k

)
times:

the state-generating, the reflecting, or the membership one.

Proof. For the membership oracle, this is just quantum counting.

Otherwise, we reflect about the state ψx, which does not change

the way the algorithm works.



Copies of the state ℓ = Ω

(
min

{
k,

√
k

ε
,
n

kε2

})

Membership oracle qM = Ω

(
1

ε

√
n

k

)

State-generating oracle qG = Ω

(
min

{
1

ε

√
n

k
,

k1/3

ε2/3

})

• with copies of the state qG
√
ℓ = Ω

(√
k

ε

)

Reflecting oracle qR = Ω

(
min

{
1

ε

√
n

k
,

√
k

ε
+

√
n

k

})

• with copies of the state

or state-generating oracle
qR
√
ℓ+ qG = Ω

(√
k

ε

)

• with copies of the state

or state-generating oracle
qR = Ω

(√
k

ε

)
and ℓ+ qG ≥ 1

• with membership oracle: qR = Ω

(√
k

ε

)
and qM = Ω

(√
n

k

)



Matching Upper Bound III

History

Aaronson et al.

Our Result

Our Settings

Main Theorem

Matching Upper Bound

I

Matching Upper Bound

II

Matching Upper Bound

III

Techniques

Representation Theory

Summary

23 / 43

Proposition. Assume t distinct elements of x are given to the

algorithm. Then, it is possible to solve the approximate counting

problem using any of the following input oracles O
(

1
ε

√
k
t

)
times:

the state-generating, or the reflecting one.

Proof. Let S be the subset given to us.

Perform amplitude estimation on ψx, where the marked elements

are the ones in S.

The amplitude is either
√
t/k or

√
t/k′.

Since
√
t/k =

(
1 + Ω(ε)

)√
t/k′, it takes O

(
1
ε

√
k
t

)
queries to

the reflecting or the state-generating oracles to distinguish the two

cases.
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Spectral formulation of the negative-weighted adversary bound

Høyer, Lee, Špalek, 2007

‖Γ‖
maxj∈[n] ‖Γ ◦∆j‖

� X, Y : sets of positive and negative inputs;

� Γ: real X × Y -matrix;

� ∆j : also X × Y -matrix given by

∆j[[x, y]] = 1xj 6=yj ;

� Γ ◦∆j is Hadamard product:

(A ◦B)[[x, y]] = A[[x, y]]B[[x, y]];

� ‖Γ‖ is spectral norm.
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Group ∆mem = (∆mem
x,y )x∈X,y∈Y , where

∆mem
x,y =

⊕

j∈[n]

1xj 6=yj =




1x1 6=y1 0 · · · 0
0 1x2 6=y2 · · · 0
...

...
. . .

...

0 0 · · · 1xn 6=yn




Extend Hadamard product notation:

(Γ ◦∆mem)[[x, y]] = Γ[[x, y]]∆mem
x,y .

We have

Γ ◦∆mem =
⊕

j∈[n]

Γ ◦∆j =⇒ ‖Γ ◦∆mem‖ = max
j∈[n]

‖Γ ◦∆j‖.
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Spectral formulation of the negative-weighted adversary bound

Høyer, Lee, Špalek, 2007

‖Γ‖
‖Γ ◦∆mem‖

We say that ∆mem = (∆mem
x,y )x∈X,y∈Y , where

∆mem
x,y =

⊕

j∈[n]

1xj 6=yj =




1x1 6=y1 0 · · · 0
0 1x2 6=y2 · · · 0
...

...
. . .

...

0 0 · · · 1xn 6=yn




represents the standard input oracle.
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General input oracle: arbitrary unitary Ox with x ∈ X ∪ Y .

Belovs, 2019

‖Γ‖
‖Γ ◦∆‖

General input oracle is represented by

∆x,y = Ox −Oy.
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General input oracle: arbitrary unitary Ox with x ∈ X ∪ Y .

Belovs, 2019

‖Γ‖
‖Γ ◦∆‖

General input oracle is represented by

∆x,y = Ox −Oy.

We can use for the oracle reflecting about ψx:

∆refl
x,y = (2ψxψ

∗
x − I)− (2ψyψ

∗
y − I) = 2(ψxψ

∗
x − ψyψ

∗
y).
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State-generating input oracle: maps |0〉 7→ |ψx〉.

Belovs, 2019

Is represented by

∆gen
x,y = (ψx ⊕ ψ∗

x)− (ψy ⊕ ψ∗
y).

ψx ⊕ ψ∗
x =




| 0 0 0
ψx 0 0 0
| 0 0 0
0 − ψ∗

x −


 .
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Adversary bound with general input oracles:

‖Γ‖
‖Γ ◦∆‖

How can we account for several input oracles?
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Adversary bound with general input oracles:

‖Γ‖
‖Γ ◦∆‖

How can we account for several input oracles?

If ‖Γ‖ = 1, then the algorithm needs

Ω

(
1

‖Γ ◦∆‖

)
queries to solve the problem.
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Adversary bound with general input oracles:

‖Γ‖
‖Γ ◦∆‖

How can we account for several input oracles?

If ‖Γ‖ = 1, then the algorithm needs

Ω

(
1

‖Γ ◦∆‖

)
queries to solve the problem.

Now assume we have ∆(1) and ∆(2).
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Adversary bound with general input oracles:

‖Γ‖
‖Γ ◦∆‖

How can we account for several input oracles?

If ‖Γ‖ = 1, then the algorithm has to make

� Ω

(
1

‖Γ ◦∆(1)‖

)
queries to the first oracle; or

� Ω

(
1

‖Γ ◦∆(2)‖

)
queries to the second oracle

to solve the problem.
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Let Γ be an X × Y -matrix with ‖Γ‖ = 1.

Then, the algorithm has to make

� Ω

(
1

‖Γ ◦∆mem‖

)
queries to the membership oracle; or

� Ω

(
1

‖Γ ◦∆refl‖

)
queries to the reflecting oracle; or

� Ω

(
1

‖Γ ◦∆gen‖

)
queries to the state-generating oracle

to solve the problem.
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With copies of the state ψx, the problem is a state-conversion

problem.

Ambainis, Magnin, Rötteler, Roland, 2011

Define the Gram matrix Ψ with

Ψ[[x, y]] = 〈ψx, ψy〉.

The Gram matrix of ℓ copies is Ψ◦ℓ.
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Let Γ be an X × Y -matrix with ‖Γ‖ = 1 and ‖Γ ◦Ψ◦ℓ‖ = Ω(1).
Then, having ℓ copies of the state ψx, the algorithm has to make

� Ω

(
1

‖Γ ◦∆mem‖

)
queries to the membership oracle; or

� Ω

(
1

‖Γ ◦∆refl‖

)
queries to the reflecting oracle; or

� Ω

(
1

‖Γ ◦∆gen‖

)
queries to the state-generating oracle

to solve the problem.
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The matrix Γ is symmetric with respect to the permutations of [n].

Γ =
k∑

j=0

γjΦj,

where Φj are the isomorphisms between the copies of the irreps of

the symmetric group in R
Y and R

X .

‖Γ‖ = max
j

|γj|.
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Some calculations. . .
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Let k′ = (1 + ε)k.

φj,0 :=

√
j(k − j + 1)(n− k − j + 1)

(n− 2j + 2)(n− 2j + 1)k
, φ′

j,0 :=

√
j(k′ − j + 1)(

(n− 2j +

φj,1 :=

√
k

n
, φ′

j,1 :=

√
k′

n
,

φj,2 :=
n− 2k√

nk

√
j(n− j + 1)

(n− 2j + 2)(n− 2j)
, φ′

j,2 :=
n− 2k′√

nk′

√

(n−

φj,3 :=

√
(n− j + 1)(k − j)(n− k − j)

(n− 2j + 1)(n− 2j)k
, φ′

j,3 :=

√
(n− j + 1)(

(n− 2j
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φj =




φj,0

φj,1

φj,2

φj,3


 φ′

j =




φ′
j,0

φ′
j,1

φ′
j,2

φ′
j,3




φ̃j =




γj−1φj,0

γjφj,1

γjφj,2

γj+1φj,3


 φ̃′

j =




γj−1φ
′
j,0

γjφ
′
j,1

γjφ
′
j,2

γj+1φ
′
j,3


 .
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Γ ◦Ψ =
k∑

j=0

〈φj, φ̃
′
j〉Φj

‖Γ ◦∆gen‖ = max
j

max
{∥∥∥φ̃′

j − γjφj

∥∥∥,
∥∥∥γjφ′

j − φ̃j

∥∥∥
}

∥∥Γ ◦∆refl
∥∥ = max

j

∥∥∥φ′
jφ̃

′
j

∗ − φ̃jφ
∗
j

∥∥∥

‖Γ ◦∆mem‖ = max
j

max

{

∣∣∣∣

√
(k − j)(n− k′ − j)

n− 2j
γj −

√
(k′ − j)(n− k − j)

n− 2j
γj+1

∣∣∣∣,
∣∣∣∣

√
(k′ − j)(n− k − j)

n− 2j
γj −

√
(k − j)(n− k′ − j)

n− 2j
γj+1

∣∣∣∣
}
.
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Summary

� Demonstrated how to use the new version of the adversary

bound

� for various input oracles;

� to prove trade-offs between them.

� Developed ancillary lemmas for subsets of a uniform set.

Open Problems

� Do we need representation theory?
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Thank you!
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