
1 / 43

Tight Quantum Lower Bound for

Approximate Counting with Quantum

States

Alexander Belov

University of Latvia
joint with

Ansis Rosmanis

Nagoya University

Joint Latvian-Estonian Theory Days 2022

Rı̄ga, May the 6th, 2022

History

History

Variations

Question

Suggestion

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

2 / 43

Variations

History

Variations

Question

Suggestion

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

3 / 43

Variations

History

Variations

Question

Suggestion

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

3 / 43

Variations

History

Variations

Question

Suggestion

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

4 / 43

� Goal:

Bring the quantum adversary method under

common general settings.

Variations

History

Variations

Question

Suggestion

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

5 / 43

� Usual Adversary Tight characterization of quantum query

complexity in normal settings:

� Input: encodes a string x as a unitary

Ox : |i〉|0〉 7→ |i〉|xi〉;

� Output: evaluates a function f(x) when measured.

Variations

History

Variations

Question

Suggestion

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

5 / 43

� Usual Adversary Tight characterization of quantum query

complexity in normal settings:

� Input: encodes a string x as a unitary

Ox : |i〉|0〉 7→ |i〉|xi〉;

� Output: evaluates a function f(x) when measured.

� “Variations” Adversary Semi-tight characterization when

� Input: arbitrary unitary Ox;

� Output: arbitrary unitary Vx.

Variations

History

Variations

Question

Suggestion

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

6 / 43

� “Variations” Adversary Semi-tight characterization when

� Input: arbitrary unitary Ox;

� Output: arbitrary unitary Vx.

From this, you can derive other versions:

� State conversion, state preparation, relation evaluation, . . .

Question

History

Variations

Question

Suggestion

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

7 / 43

Can this new method be used for real

problems?

Suggestion

History

Variations

Question

Suggestion

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

8 / 43

Suggestion

History

Variations

Question

Suggestion

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

8 / 43

Aaronson et al.

History

Aaronson et al.

Paper

Counting

New Life

Main Result

Our Result

Techniques

Representation Theory

Summary

9 / 43

Paper

History

Aaronson et al.

Paper

Counting

New Life

Main Result

Our Result

Techniques

Representation Theory

Summary

10 / 43NB: Dangling modifier. . .

Counting

History

Aaronson et al.

Paper

Counting

New Life

Main Result

Our Result

Techniques

Representation Theory

Summary

11 / 43

� Old and well-known problem:

� Given a subset x ⊆ [n],
� find |x| with multiplicative precision ε.

� Can be done in O

(
1
ε

√
n
|x|

)
queries assuming membership

access to x:

Brassard, Høyer, and Tapp (1998).

� And this is optimal

Bennett, Bernstein, Brassard, and Vazirani (1997).

Counting

History

Aaronson et al.

Paper

Counting

New Life

Main Result

Our Result

Techniques

Representation Theory

Summary

12 / 43

� Old and well-known problem:

� Given a subset x ⊆ [n],
� find |x| with multiplicative precision ε.

� distinguish two cases

� |x| = k, or

� |x| = k′ = (1 + ε)k.

� Can be done in O

(
1
ε

√
n
|x|

)
queries assuming membership

access to x:

Brassard, Høyer, and Tapp (1998).

� And this is optimal

Bennett, Bernstein, Brassard, and Vazirani (1997).

New Life

History

Aaronson et al.

Paper

Counting

New Life

Main Result

Our Result

Techniques

Representation Theory

Summary

13 / 43

� Membership oracle is good, but too classique.

� Let us have more quantum resources.

New Life

History

Aaronson et al.

Paper

Counting

New Life

Main Result

Our Result

Techniques

Representation Theory

Summary

13 / 43

� Membership oracle is good, but too classique.

� Let us have more quantum resources.

What can be more quantum than this

|ψx〉 =
1√
|x|
∑

i∈x

|i〉 ?

Main Result

History

Aaronson et al.

Paper

Counting

New Life

Main Result

Our Result

Techniques

Representation Theory

Summary

14 / 43

� Can have copies of

� Can reflect about
|ψx〉 =

1√
|x|
∑

i∈x

|i〉.

Theorem. Assume ε = 1. Then the algorithm either has to

� invoke the membership oracle Ω
(√

n/k
)

times, or

� access the state |ψx〉 at least Ω
(
min{k1/3,

√
n/k}

)
times.

Our Result

History

Aaronson et al.

Our Result

Our Settings

Main Theorem

Matching Upper Bound

I

Matching Upper Bound

II

Matching Upper Bound

III

Techniques

Representation Theory

Summary

15 / 43

Our Settings

History

Aaronson et al.

Our Result

Our Settings

Main Theorem

Matching Upper Bound

I

Matching Upper Bound

II

Matching Upper Bound

III

Techniques

Representation Theory

Summary

16 / 43

Assume ε = 1...

We consider all 1/k ≤ ε ≤ 1.

Our Settings

History

Aaronson et al.

Our Result

Our Settings

Main Theorem

Matching Upper Bound

I

Matching Upper Bound

II

Matching Upper Bound

III

Techniques

Representation Theory

Summary

16 / 43

Assume ε = 1...

We consider all 1/k ≤ ε ≤ 1.

� Can have copies of

� Can reflect about
|ψx〉 =

1√
|x|
∑

i∈x

|i〉.

We add state-generating oracle: |0〉 7→ |ψx〉.

State-generating
oracle

Copy of
the state

Reflecting
oracle

Copies of the state ℓ = Ω

(
min

{
k,

√
k

ε
,
n

kε2

})

Membership oracle qM = Ω

(
1

ε

√
n

k

)

State-generating oracle qG = Ω

(
min

{
1

ε

√
n

k
,

k1/3

ε2/3

})

• with copies of the state qG
√
ℓ = Ω

(√
k

ε

)

Reflecting oracle qR = Ω

(
min

{
1

ε

√
n

k
,

√
k

ε
+

√
n

k

})

• with copies of the state

or state-generating oracle
qR
√
ℓ+ qG = Ω

(√
k

ε

)

• with copies of the state

or state-generating oracle
qR = Ω

(√
k

ε

)
and ℓ+ qG ≥ 1

• with membership oracle: qR = Ω

(√
k

ε

)
and qM = Ω

(√
n

k

)

Copies of the state ℓ = Ω

(
min

{
k,

√
k

ε
,
n

kε2

})

Membership oracle qM = Ω

(
1

ε

√
n

k

)

State-generating oracle qG = Ω

(
min

{
1

ε

√
n

k
,

k1/3

ε2/3

})

• with copies of the state qG
√
ℓ = Ω

(√
k

ε

)

Reflecting oracle qR = Ω

(
min

{
1

ε

√
n

k
,

√
k

ε
+

√
n

k

})

• with copies of the state

or state-generating oracle
qR
√
ℓ+ qG = Ω

(√
k

ε

)

• with copies of the state

or state-generating oracle
qR = Ω

(√
k

ε

)
and ℓ+ qG ≥ 1

• with membership oracle: qR = Ω

(√
k

ε

)
and qM = Ω

(√
n

k

)

This is
tight!

Copies of the state ℓ = Ω

(
min

{
k,

√
k

ε
,
n

kε2

})

Membership oracle qM = Ω

(
1

ε

√
n

k

)

State-generating oracle qG = Ω

(
min

{
1

ε

√
n

k
,

k1/3

ε2/3

})

• with copies of the state qG
√
ℓ = Ω

(√
k

ε

)

Reflecting oracle qR = Ω

(
min

{
1

ε

√
n

k
,

√
k

ε
+

√
n

k

})

• with copies of the state

or state-generating oracle
qR
√
ℓ+ qG = Ω

(√
k

ε

)

• with copies of the state

or state-generating oracle
qR = Ω

(√
k

ε

)
and ℓ+ qG ≥ 1

• with membership oracle: qR = Ω

(√
k

ε

)
and qM = Ω

(√
n

k

)

Matching Upper Bound I

History

Aaronson et al.

Our Result

Our Settings

Main Theorem

Matching Upper Bound

I

Matching Upper Bound

II

Matching Upper Bound

III

Techniques

Representation Theory

Summary

19 / 43

Proposition. It is possible to solve the approximate counting

problem using O(k log k) classical samples from x.

Proof. Sample the elements out of x sufficiently many times.

Output that |x| = k if the number of distinct elements observed is

at most k, otherwise output that |x| = k′.
The algorithm has 1-sided error.

The analysis follows from the standard coupon collecting problem.

� This is the only place where we are tight only up to a log.

Copies of the state ℓ = Ω

(
min

{
k,

√
k

ε
,
n

kε2

})

Membership oracle qM = Ω

(
1

ε

√
n

k

)

State-generating oracle qG = Ω

(
min

{
1

ε

√
n

k
,

k1/3

ε2/3

})

• with copies of the state qG
√
ℓ = Ω

(√
k

ε

)

Reflecting oracle qR = Ω

(
min

{
1

ε

√
n

k
,

√
k

ε
+

√
n

k

})

• with copies of the state

or state-generating oracle
qR
√
ℓ+ qG = Ω

(√
k

ε

)

• with copies of the state

or state-generating oracle
qR = Ω

(√
k

ε

)
and ℓ+ qG ≥ 1

• with membership oracle: qR = Ω

(√
k

ε

)
and qM = Ω

(√
n

k

)

Matching Upper Bound II

History

Aaronson et al.

Our Result

Our Settings

Main Theorem

Matching Upper Bound

I

Matching Upper Bound

II

Matching Upper Bound

III

Techniques

Representation Theory

Summary

21 / 43

Proposition. It is possible to solve the approximate counting

problem using any of the following input oracles O
(

1
ε

√
n
k

)
times:

the state-generating, the reflecting, or the membership one.

Proof. For the membership oracle, this is just quantum counting.

Otherwise, we reflect about the state ψx, which does not change

the way the algorithm works.

Copies of the state ℓ = Ω

(
min

{
k,

√
k

ε
,
n

kε2

})

Membership oracle qM = Ω

(
1

ε

√
n

k

)

State-generating oracle qG = Ω

(
min

{
1

ε

√
n

k
,

k1/3

ε2/3

})

• with copies of the state qG
√
ℓ = Ω

(√
k

ε

)

Reflecting oracle qR = Ω

(
min

{
1

ε

√
n

k
,

√
k

ε
+

√
n

k

})

• with copies of the state

or state-generating oracle
qR
√
ℓ+ qG = Ω

(√
k

ε

)

• with copies of the state

or state-generating oracle
qR = Ω

(√
k

ε

)
and ℓ+ qG ≥ 1

• with membership oracle: qR = Ω

(√
k

ε

)
and qM = Ω

(√
n

k

)

Matching Upper Bound III

History

Aaronson et al.

Our Result

Our Settings

Main Theorem

Matching Upper Bound

I

Matching Upper Bound

II

Matching Upper Bound

III

Techniques

Representation Theory

Summary

23 / 43

Proposition. Assume t distinct elements of x are given to the

algorithm. Then, it is possible to solve the approximate counting

problem using any of the following input oracles O
(

1
ε

√
k
t

)
times:

the state-generating, or the reflecting one.

Proof. Let S be the subset given to us.

Perform amplitude estimation on ψx, where the marked elements

are the ones in S.

The amplitude is either
√
t/k or

√
t/k′.

Since
√
t/k =

(
1 + Ω(ε)

)√
t/k′, it takes O

(
1
ε

√
k
t

)
queries to

the reflecting or the state-generating oracles to distinguish the two

cases.

Techniques

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

24 / 43

Standard Adversary Bound

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

25 / 43

Spectral formulation of the negative-weighted adversary bound

Høyer, Lee, Špalek, 2007

‖Γ‖
maxj∈[n] ‖Γ ◦∆j‖

� X, Y : sets of positive and negative inputs;

� Γ: real X × Y -matrix;

� ∆j : also X × Y -matrix given by

∆j[[x, y]] = 1xj 6=yj ;

� Γ ◦∆j is Hadamard product:

(A ◦B)[[x, y]] = A[[x, y]]B[[x, y]];

� ‖Γ‖ is spectral norm.

Standard Input Oracle

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

26 / 43

Group ∆mem = (∆mem
x,y)x∈X,y∈Y , where

∆mem
x,y =

⊕

j∈[n]

1xj 6=yj =




1x1 6=y1 0 · · · 0
0 1x2 6=y2 · · · 0
...

...
. . .

...

0 0 · · · 1xn 6=yn




Extend Hadamard product notation:

(Γ ◦∆mem)[[x, y]] = Γ[[x, y]]∆mem
x,y .

We have

Γ ◦∆mem =
⊕

j∈[n]

Γ ◦∆j =⇒ ‖Γ ◦∆mem‖ = max
j∈[n]

‖Γ ◦∆j‖.

Standard Input Oracle

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

27 / 43

Spectral formulation of the negative-weighted adversary bound

Høyer, Lee, Špalek, 2007

‖Γ‖
‖Γ ◦∆mem‖

We say that ∆mem = (∆mem
x,y)x∈X,y∈Y , where

∆mem
x,y =

⊕

j∈[n]

1xj 6=yj =




1x1 6=y1 0 · · · 0
0 1x2 6=y2 · · · 0
...

...
. . .

...

0 0 · · · 1xn 6=yn




represents the standard input oracle.

General Input Oracle

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

28 / 43

General input oracle: arbitrary unitary Ox with x ∈ X ∪ Y .

Belovs, 2019

‖Γ‖
‖Γ ◦∆‖

General input oracle is represented by

∆x,y = Ox −Oy.

General Input Oracle

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

28 / 43

General input oracle: arbitrary unitary Ox with x ∈ X ∪ Y .

Belovs, 2019

‖Γ‖
‖Γ ◦∆‖

General input oracle is represented by

∆x,y = Ox −Oy.

We can use for the oracle reflecting about ψx:

∆refl
x,y = (2ψxψ

∗
x − I)− (2ψyψ

∗
y − I) = 2(ψxψ

∗
x − ψyψ

∗
y).

State-Generating Input Oracle

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

29 / 43

State-generating input oracle: maps |0〉 7→ |ψx〉.

Belovs, 2019

Is represented by

∆gen
x,y = (ψx ⊕ ψ∗

x)− (ψy ⊕ ψ∗
y).

ψx ⊕ ψ∗
x =




| 0 0 0
ψx 0 0 0
| 0 0 0
0 − ψ∗

x −


 .

Multiple Input Oracles

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

30 / 43

Adversary bound with general input oracles:

‖Γ‖
‖Γ ◦∆‖

How can we account for several input oracles?

Multiple Input Oracles

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

30 / 43

Adversary bound with general input oracles:

‖Γ‖
‖Γ ◦∆‖

How can we account for several input oracles?

If ‖Γ‖ = 1, then the algorithm needs

Ω

(
1

‖Γ ◦∆‖

)
queries to solve the problem.

Multiple Input Oracles

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

30 / 43

Adversary bound with general input oracles:

‖Γ‖
‖Γ ◦∆‖

How can we account for several input oracles?

If ‖Γ‖ = 1, then the algorithm needs

Ω

(
1

‖Γ ◦∆‖

)
queries to solve the problem.

Now assume we have ∆(1) and ∆(2).

Multiple Input Oracles

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

31 / 43

Adversary bound with general input oracles:

‖Γ‖
‖Γ ◦∆‖

How can we account for several input oracles?

If ‖Γ‖ = 1, then the algorithm has to make

� Ω

(
1

‖Γ ◦∆(1)‖

)
queries to the first oracle; or

� Ω

(
1

‖Γ ◦∆(2)‖

)
queries to the second oracle

to solve the problem.

Formulation of the Optimisation Problem

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

32 / 43

Let Γ be an X × Y -matrix with ‖Γ‖ = 1.

Then, the algorithm has to make

� Ω

(
1

‖Γ ◦∆mem‖

)
queries to the membership oracle; or

� Ω

(
1

‖Γ ◦∆refl‖

)
queries to the reflecting oracle; or

� Ω

(
1

‖Γ ◦∆gen‖

)
queries to the state-generating oracle

to solve the problem.

Copies of the state

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

33 / 43

With copies of the state ψx, the problem is a state-conversion

problem.

Ambainis, Magnin, Rötteler, Roland, 2011

Define the Gram matrix Ψ with

Ψ[[x, y]] = 〈ψx, ψy〉.

The Gram matrix of ℓ copies is Ψ◦ℓ.

Formulation of the Optimisation Problem

History

Aaronson et al.

Our Result

Techniques

Standard Adversary

Bound

Standard Input Oracle

General Input Oracle

State-Generating Input

Oracle

Multiple Input Oracles

Formulation of the

Optimisation Problem

Copies of the state

Formulation of the

Optimisation Problem

Representation Theory

Summary

34 / 43

Let Γ be an X × Y -matrix with ‖Γ‖ = 1 and ‖Γ ◦Ψ◦ℓ‖ = Ω(1).
Then, having ℓ copies of the state ψx, the algorithm has to make

� Ω

(
1

‖Γ ◦∆mem‖

)
queries to the membership oracle; or

� Ω

(
1

‖Γ ◦∆refl‖

)
queries to the reflecting oracle; or

� Ω

(
1

‖Γ ◦∆gen‖

)
queries to the state-generating oracle

to solve the problem.

Representation Theory

History

Aaronson et al.

Our Result

Techniques

Representation Theory

General Form of Γ

Missing steps

Some Quantities

Some Vectors

Some Lemmas

Summary

35 / 43

General Form of Γ

History

Aaronson et al.

Our Result

Techniques

Representation Theory

General Form of Γ

Missing steps

Some Quantities

Some Vectors

Some Lemmas

Summary

36 / 43

The matrix Γ is symmetric with respect to the permutations of [n].

Γ =
k∑

j=0

γjΦj,

where Φj are the isomorphisms between the copies of the irreps of

the symmetric group in R
Y and R

X .

‖Γ‖ = max
j

|γj|.

Missing steps

History

Aaronson et al.

Our Result

Techniques

Representation Theory

General Form of Γ

Missing steps

Some Quantities

Some Vectors

Some Lemmas

Summary

37 / 43

Some calculations. . .

Some Quantities

History

Aaronson et al.

Our Result

Techniques

Representation Theory

General Form of Γ

Missing steps

Some Quantities

Some Vectors

Some Lemmas

Summary

38 / 43

Let k′ = (1 + ε)k.

φj,0 :=

√
j(k − j + 1)(n− k − j + 1)

(n− 2j + 2)(n− 2j + 1)k
, φ′

j,0 :=

√
j(k′ − j + 1)(

(n− 2j +

φj,1 :=

√
k

n
, φ′

j,1 :=

√
k′

n
,

φj,2 :=
n− 2k√

nk

√
j(n− j + 1)

(n− 2j + 2)(n− 2j)
, φ′

j,2 :=
n− 2k′√

nk′

√

(n−

φj,3 :=

√
(n− j + 1)(k − j)(n− k − j)

(n− 2j + 1)(n− 2j)k
, φ′

j,3 :=

√
(n− j + 1)(

(n− 2j

Some Vectors

History

Aaronson et al.

Our Result

Techniques

Representation Theory

General Form of Γ

Missing steps

Some Quantities

Some Vectors

Some Lemmas

Summary

39 / 43

φj =




φj,0

φj,1

φj,2

φj,3


 φ′

j =




φ′
j,0

φ′
j,1

φ′
j,2

φ′
j,3




φ̃j =




γj−1φj,0

γjφj,1

γjφj,2

γj+1φj,3


 φ̃′

j =




γj−1φ
′
j,0

γjφ
′
j,1

γjφ
′
j,2

γj+1φ
′
j,3


 .

Some Lemmas

History

Aaronson et al.

Our Result

Techniques

Representation Theory

General Form of Γ

Missing steps

Some Quantities

Some Vectors

Some Lemmas

Summary

40 / 43

Γ ◦Ψ =
k∑

j=0

〈φj, φ̃
′
j〉Φj

‖Γ ◦∆gen‖ = max
j

max
{∥∥∥φ̃′

j − γjφj

∥∥∥,
∥∥∥γjφ′

j − φ̃j

∥∥∥
}

∥∥Γ ◦∆refl
∥∥ = max

j

∥∥∥φ′
jφ̃

′
j

∗ − φ̃jφ
∗
j

∥∥∥

‖Γ ◦∆mem‖ = max
j

max

{

∣∣∣∣

√
(k − j)(n− k′ − j)

n− 2j
γj −

√
(k′ − j)(n− k − j)

n− 2j
γj+1

∣∣∣∣,
∣∣∣∣

√
(k′ − j)(n− k − j)

n− 2j
γj −

√
(k − j)(n− k′ − j)

n− 2j
γj+1

∣∣∣∣
}
.

Summary

History

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

41 / 43

History

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

42 / 43

Summary

� Demonstrated how to use the new version of the adversary

bound

� for various input oracles;

� to prove trade-offs between them.

� Developed ancillary lemmas for subsets of a uniform set.

Open Problems

� Do we need representation theory?

Thank you!

History

Aaronson et al.

Our Result

Techniques

Representation Theory

Summary

43 / 43

Thank you!

	History
	Variations
	Question
	Suggestion

	Aaronson et al.
	Paper
	Counting
	New Life
	Main Result

	Our Result
	Our Settings
	Main Theorem
	Matching Upper Bound I
	Matching Upper Bound II
	Matching Upper Bound III

	Techniques
	Standard Adversary Bound
	Standard Input Oracle
	General Input Oracle
	State-Generating Input Oracle
	Multiple Input Oracles
	Formulation of the Optimisation Problem
	Copies of the state
	Formulation of the Optimisation Problem

	Representation Theory
	General Form of
	Missing steps
	Some Quantities
	Some Vectors
	Some Lemmas

	Summary
	

