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Variations on Quantum Adversary

Aleksandrs Belovs*

Abstract

The (negative-weighted) quantum adversary bound is a tight characterisation of the
quantum query complexity for any partial function [28][38]. We analyse the extent to which
this bound can be generalised. Ambainis et al. [3] and Lee et al. generalised this bound
to the state generation and state conversion problems, respectively. Using the ideas by Lee
et al., we get even further generalisations of the bound.

We obtain a version of the bound for general input oracles, which are just arbitrary
unitaries. We also generalise the bound to the problem of implementing arbitrary unitary
transformations. Similarly to the bound by Lee ef al., our bound is a lower bound for exact
transformation and an upper bound for approximate transformation. This version of the
bound possesses the tight composition property.

Using this construction, we also obtain lower bounds on the quantum query complexity

of functions and relations with general input oracles.
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Aleksandrs Belovs*

Abstract

The (negative-weighted) quantum adversary bound is a tight characterisation of the
quantum query complexity for any partial function [28][38]. We analyse the extent to which
this bound can be generalised. Ambainis et al. [3] and Lee et al. generalised this bound
to the state generation and state conversion problems, respectively. Using the ideas by Lee
et al., we get even further generalisations of the bound.

We obtain a version of the bound for general input oracles, which are just arbitrary
unitaries. We also generalise the bound to the problem of implementing arbitrary unitary
transformations. Similarly to the bound by Lee et al., our bound is a lower bound for exact
transformation and an upper bound for approximate transformation. This version of the
bound possesses the tight composition property.

Using this construction, we also obtain lower bounds on the quantum query complexity

~of functions and relations with general input oracles.

m Goal:

Bring the quantum adversary method under

common general settings.
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Variations on Quantum Adversary

Aleksandrs Belovs*

Abstract

The (negative-weighted) quantum adversary bound is a tight characterisation of the
quantum query complexity for any partial funetion [28[38]. We analyse the extent to which
this bound can be generalised. Ambainis et al. [3] and Lee et al. generalised this bound
to the state generation and state conversion problems, respectively. Using the ideas by Lee
et al., we get even further generalisations of the bound.

We obtain a version of the bound for general input oracles, which are just arbitrary
unitaries. We also generalise the bound to the problem of implementing arbitrary unitary
transformations. Similarly to the bound by Lee ef al., our bound is a lower bound for exact
transformation and an upper bound for approximate transformation. This version of the
bound possesses the tight composition property.

Using this construction, we also obtain lower bounds on the quantum query complexity
of functions and relations with general input oracles.

B Usual Adversary Tight characterization of quantum query

complexity in normal settings:

(1 Input: encodes a string « as a unitary
Oz [2)[0) = ]i)|3);
0 Output: evaluates a function f(x) when measured.
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Abstract

The (negative-weighted) quantum adversary bound is a tight characterisation of the
quantum query complexity for any partial funetion [28[38]. We analyse the extent to which
this bound can be generalised. Ambainis ef al. [3] and Lee ef al. generalised this bound
to the state generation and state conversion problems, respectively. Using the ideas by Lee
et al., we get even further generalisations of the bound.

We obtain a version of the bound for general input oracles, which are just arbitrary
unitaries. We also generalise the bound to the problem of implementing arbitrary unitary
transformations. Similarly to the bound by Lee ef al., our bound is a lower bound for exact
transformation and an upper bound for approximate transformation. This version of the
bound possesses the tight composition property.

Using this construction, we also obtain lower bounds on the quantum query complexity
of functions and relations with general input oracles.

Usual Adversary Tight characterization of quantum query
complexity in normal settings:

(1 Input: encodes a string « as a unitary
Oz [2)[0) = ]i)|3);
0 Output: evaluates a function f(x) when measured.

“Variations” Adversary Semi-tight characterization when

O Input: arbitrary unitary O,;

[0 OQutput: arbitrary unitary V. 5 /43
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Abstract

The (negative-weighted) quantum adversary bound is a tight characterisation of the
quantum query complexity for any partial funetion [28[38]. We analyse the extent to which
this bound can be generalised. Ambainis et al. [3] and Lee et al. generalised this bound
to the state generation and state conversion problems, respectively. Using the ideas by Lee
et al., we get even further generalisations of the bound.

We obtain a version of the bound for general input oracles, which are just arbitrary
unitaries. We also generalise the bound to the problem of implementing arbitrary unitary
transformations. Similarly to the bound by Lee ef al., our bound is a lower bound for exact
transformation and an upper bound for approximate transformation. This version of the
bound possesses the tight composition property.

Using this construction, we also obtain lower bounds on the quantum query complexity
of functions and relations with general input oracles.

B “Variations” Adversary Semi-tight characterization when

O Input: arbitrary unitary O,;
[0 OQutput: arbitrary unitary V..

From this, you can derive other versions:

B State conversion, state preparation, relation evaluation, ...
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Techniques

Abstract

We study quantum algorithms that are given access to trusted and untrusted guantum
witnesses. We establish strong limitations of such algorithins, via new technigues based on
Laurent polynomicls (i.e., polynomials with positive and negative integer exponents). Specifically,
we resolve the complexity of approzimate counting, the problem of multiplicatively estimating
the size of a nonemply set S C [N], in two natural generalizations of quantum query complexity.

Our first resnlt holds in the standard Quantum Merlin-Arthur (QMA) setting, in which a
quantum algorithm receives an untrusted quantum witness. We show that, if the algorithm
makes T quantum queries to S, and also receives an (untrusted) m-qubit quantum witness, then
either m = Q(|5]) or 7' = Q(y/N/[S]). This is optimal, matching the straightforward protocols
where the witness is either empty, or specifies all the elements of 5. As a corollary, this resolves
the open problem of giving an oracle separation between SBP, the complexity class that captures
approximate counting, and QMA.

In our second result, we ask what if, in addition to a membership oracle for S, a quantim
algorithm is also given “QSamples™—i.e., copies of the state |S} = \/;T ¥ ieg [8)— or even access

Representation Theory

Summary
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Counting via Laurent Polynomials®
Scott Aaronson' Robin Kothari* William Kretschmer® Justin Thaler?

Abstract

We study quantum algorithms that are given access to trusted and untrusted quantum

| witnesses. We establish strong limitations of such algorithms, via new technigques based on
| Laurent polynomials (le., polynomials with positive and negative integer exponents). Specifically,
- we resolve the complexity of approzimate counting, the problem of multiplicatively estimating

the size of a nonempty set S € [N], in two natural generalizations of quantum query complexity.
Our first result holds in the standard Quantum Merlin- Arthur (QMA) setting, in which a

| gquantum algorithm receives an untrusted quantum witness. We show that, if the algorithm
| makes T' quantuim queries to S, and also receives an (untrusted) m-qubit quantum witness, then
| either m = Q([S]) or T' = Q(/N/[S]). This is optimal. matching the straightforward protocols
| where the wiltness is either empty, or specifies all the elements of §. As a corollary, this resolves

the open problem of giving an oracle separation between SBP, the complexity class that captures
approximate counting, and QMA.
In our second result, we ask what if, in addition to a membership oracle for 5. a guantiun

algorithm is also given “QQSamples”—i.e., copies of the state |S) = 75 > icg |§)— or even access

L= tn s amitary draneformation that enahlee OSamnline? - We choue that- esven then the aloarithm

NB: Dangling modifier. . .
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We study quantum algorithms that are given access to trusted and untrusted quantum
witnesses, We establish strong limitati of such algorithms, via new i based on
Laurent polynomials (i.c., polynomials with positive and negative integer exponents). Specifically,
we ve the complexity of approzimate counting, the problem of multiplicatively estimating
the size of a nonempty set § € [N], in two natural generalizations of quantum query complexity.

Our first result hol 1 the standard Quantum Merlin-Arthur (QMA) setting, in which a
quantum algorithm receives an untrusted quantum witness. We show that, if the algorithm
makes T quantum queries to S, and also receives an (nntrusted) m-qubit quantum witness, then
cither m = Q(|S]) or T = Q(/N/]S]). This is optimal, matching the straightforward protocols
where the witness is either empty, or specifies all the elements of 5. As a corollary, this resolves
the open problem of giving an oracle separation between SBP, the complexity class that captures
approximate counting, and QMA.

In our second result, we ask what if, in addition to a membership oracle for S, a quantum
algorithm is also given “QSamples”™ i.c., copies of the state |S) = s |)— or cven access
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ian_that enahles O i W show that _even then_the alooritlm

Can have copies of 1)) = 1 Z|
Can reflect about ! Nav —

Assume € = 1. Then the algorithm either has to

B invoke the membership oracle §) n times, or

B access the state |1,) at least Q( min{k'/?, \/n/k} ) times.
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Assume e = 1...
We consider all 1/k < e < 1.

B Can have copies of 1 .
’ ) = ——= Y |i).

B Can reflect about

We add state-generating oracle: |0) — |1,).

State-generating

oracle
Copy of Reflecting
the state oracle
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Proposition. It is possible to solve the approximate counting
problem using O(k log k) classical samples from .

Proof. Sample the elements out of & sufficiently many times.
Output that || = k if the number of distinct elements observed is
at most k, otherwise output that |x| = k'

The algorithm has 1-sided error.

The analysis follows from the standard coupon collecting problem.

B Thisis the only place where we are tight only up to a log.
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Proposition. It is possible to solve the approximate counting

problem using any of the following input oracles O G\/%) times:
the state-generating, the reflecting, or the membership one.

Proof. For the membership oracle, this is just quantum counting.
Otherwise, we reflect about the state 1,., which does not change
the way the algorithm works.
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Proposition. Assume ¢ distinct elements of = are given to the
algorithm. Then, it is possible to solve the approximate counting

problem using any of the following input oracles O (i\/%) times:
the state-generating, or the reflecting one.

Proof. Let S be the subset given to us.
Perform amplitude estimation on 7)., where the marked elements
are the ones in S.

The amplitude is either \/t/k or \/t/k'.
Since \/t/k = (1 + Q(e))/t/F, it takes O(é\/%) queries to

the reflecting or the state-generating oracles to distinguish the two
cases.
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Standard Adversary Bound

Spectral formulation of the negative-weighted adversary bound

1T
mane[n] HF @) A]H

B X, Y': sets of positive and negative inputs;
B [:real X X Y-matrix;
B A;:also X x Y-matrix given by

A] [[:C7 y]] — 1a:j;éyj;

B ['oA;isHadamard product:
(Ao B)[x.y] = Alz, y] Blr, y];

m ||['|| is spectral norm.
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Group A™™ = (A7) e x yev, Where

(19617@1 0 to 0 \
0 Lypgty, - 0

AT = D 14,2, =

j€ln] \ O 0 1%;%)

Extend Hadamard product notation:

(T'o A™™) [z, y] = T, yJ AT

We have

FoAmem—@FoA — HFOAmemHZ%%f](HFOAjH-

J€(n] 26 /43
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Standard Input Oracle

Spectral formulation of the negative-weighted adversary bound

1]
|1 o Amer|

We say that A™™ = (AZ¥™) cx yey, Where

(1331#% 0o  --- 0 \
0 lyyzy - 0

Amem @ 1%#% =

j€n] \ O 0 1%;%)

represents the standard input oracle.
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General Input Oracle

General input oracle: arbitrary unitary O, withz € X UY’.

Il
I o A

General input oracle is represented by

Ayy =0, —O,.
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General input oracle: arbitrary unitary O, withz € X UY’.

Il
I o A

General input oracle is represented by

Ayy =0, —O,.

We can use for the oracle reflecting about 1),

Agjg — (2%%@ o ]) o (Q%@DZ o I) — 2(¢x¢; o %ﬂ@)
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Multiple Input Oracles

Adversary bound with general input oracles:

Il
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How can we account for several input oracles?
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Multiple Input Oracles

Adversary bound with general input oracles:

Il
I o Al

How can we account for several input oracles?

If ||| = 1, then the algorithm needs

1
() ( I AH> queries to solve the problem.
O

Now assume we have A and A®),
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Multiple Input Oracles

History Adversary bound with general input oracles:

Aaronson et al.

Our Result § | ’ F ‘ |
Techniques § HF 'e) AH

Standard Adversary
Bound

SenddimoEse - How can we account for several input oracles?

General Input Oracle

State-Generating Input E

Oracle . If [|[T']| = 1, then the algorithm has to make

Multiple Input Oracles <

Formulation of the . 1
opmsstonfresen s () ueries to the first oracle; or
Copies of the state : ( HF o A(l) H ) q
Formulation of the e
Optimisation Problem 1 .

:om Q) queries to the second oracle
Representation Theory ¢ HF o A(Z) H

to solve the problem.

Summary
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Let I' be an X X Y -matrix with ||T'|| = 1.
Then, the algorithm has to make

1
m () ( HF A ”> queries to the membership oracle; or
e) mem

1
m Q) ( IToA eﬂ”> queries to the reflecting oracle; or
O r

1
m ) ueries to the state-generating oracle
(HFOAgenH>q JEnerEnS

to solve the problem.
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Copies of the state

With copies of the state 1),., the problem is a state-conversion
problem.

Define the Gram matrix ¥ with

Uz, yl = W, by)-

The Gram matrix of ¢ copies is U°*.
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Let " be an X x Y-matrix with ||'|| = 1 and [|T" o °¢|| = Q(1).
Then, having ¢ copies of the state 1),., the algorithm has to make

L] Q(HF A | ) queries to the membership oracle; or
'e) mem

O Q(HF A o] ) queries to the reflecting oracle; or
O

O Q(HF Agen ) queries to the state-generating oracle
O

to solve the problem.
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General Form of |

The matrix I is symmetric with respect to the permutations of [n].

where ®; are the isomorphisms between the copies of the irreps of

the symmetric group in RY and R~*.

I = masx 3]
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Missing steps

Some calculations...
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Some Quantities

History E
Aaronson et al. ; Let k/ — (1 —I_ g)k
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Missing steps
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Some Quantities

Some Vectors . /
Some Lemmas E ¢ — k ¢’ R .
! 7,1 - ) 7,1 )
. mn n
Summary

& .:n_Qk jn—j+1) " .:n—Qk’
72 vnk (n—25+2)(n—25)’ 5,2 i (n

5 .\/<nj+1><kj><nkj> 5 ,\/<nj+1;
" (n=2j+ -2k~ (n—2
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T o A™™|| = max max {
J
VE=)n-F-35)  VF -5k
) Y5 — . Vi+1];
n— 279 n—2j

VE = —k=35)  V(k=5)n-k -] }
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History

Aaronson et al.

Our Result

Techniques

Representation Theory ¢

Summary

Summary

B Demonstrated how to use the new version of the adversary
bound

[1 for various input oracles;
[1 to prove trade-offs between them.

B Developed ancillary lemmas for subsets of a uniform set.

Open Problems

B Do we need representation theory?
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