
On Unequal Data Demand PIR Codes

Martin Puškin, Henk D.L. Hollmann, Ago-Erik Riet

University of Tartu

2022

Martin Puškin, Henk D.L. Hollmann, Ago-Erik Riet (University of Tartu)On Unequal Data Demand PIR Codes 2022 1 / 34



Table of Contents

1 Introduction to error-correction codes and UEP codes

2 Introduction to PIR codes and UDD PIR codes

3 The Griesmer Bound for UDD PIR Codes
Proof Using UEP Codes
Proof Using Hyperplanes

4 Optimal UDD PIR codes for k ≤ 3

Martin Puškin, Henk D.L. Hollmann, Ago-Erik Riet (University of Tartu)On Unequal Data Demand PIR Codes 2022 2 / 34



Table of Contents

1 Introduction to error-correction codes and UEP codes

2 Introduction to PIR codes and UDD PIR codes

3 The Griesmer Bound for UDD PIR Codes
Proof Using UEP Codes
Proof Using Hyperplanes

4 Optimal UDD PIR codes for k ≤ 3

Martin Puškin, Henk D.L. Hollmann, Ago-Erik Riet (University of Tartu)On Unequal Data Demand PIR Codes 2022 3 / 34



Error-correction codes

Everything in this talk will be over the binary field F2, unless explicitly
stated otherwise.

A (binary) [n, k] error-correction code C is a k-dimensional subspace of
Fn

2. An encoder of the code C is a linear bijection ϵ : Fk
2 → C which maps

the message word m ∈ Fk
2 to a corresponding code word mG ∈ C , where

G ∈ Matk,n(F2). We call G the generator matrix for C .

An important parameter of C is its distance d = min{wt(u) | u ∈ C \ {0}}
where wt(u) equals the number of non-zero components of u. If d is
known, we also call C an [n, k , d ] error-correction code.

Example
Let C = {(1, 1, 1), (0, 0, 0)}. Then C is a [3, 1, 3] error-correction code.
If noise in the transmission channel changes one bit in the code word, then
we can correct the error.
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UEP Codes

Clearly, codes with higher distance have higher error detection and error
correction capabilities.

However, for regular error-correction codes either the whole message or no
part of the message can be recovered.

An unequal error protection (UEP) code is an error-correction code where
some bits of the code word may be more protected than others and can
sometimes be recovered independently.

Example
We can define the encoder ϵ to map (a, b) to (a, a, a, b). Now, clearly the
first coordinate is more protected than the second.
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UEP Codes

In 1978, Dunning and Robins introduced the concept of a separation vector
to characterize the error protection capability of UEP codes.

Definition
For a linear [n, k] code C with a generator matrix G we define the
separation vector S(G ) = (S(G )1, . . . ,S(G )k) by

S(G )i := min{wt(mG ) | m ∈ Fk
2 ,mi ̸= 0}.

The higher the value S(G )i the stronger the protection for the i-th data
symbol in the message word m.
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The Griesmer Bound

An important lower bound for error-correction codes is the Griesmer bound:

Theorem (Griesmer Bound)
Let C be an [n, k, d ] error-correction code. Then

n ≥
k∑

i=1

⌈
d

2i−1

⌉
.

In 1998, van Gils generalized the Griesmer bound to UEP codes.

Theorem (Griesmer Bound for UEP Codes)
Let C be an [n, k] linear code with the separation vector
S = (S1, . . . ,Sk) ∈ (N ∪ {0})k with S1 ≥ S2 ≥ . . . ≥ Sk . Then

n ≥
k∑

i=1

⌈
Si

2i−1

⌉
.
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PIR Scheme

A private information retrieval (PIR) scheme is any algorithm which allows
a user to request data from a system of servers in such a way that no
server gets any information about which item was requested.

Example
Assume we have two servers S1 and S2 which both store the vector
(x1, . . . , xn) ∈ {0, 1}n and the user wants to retrieve xi . To this end, they
uniformly randomly choose a query vector q ∈ {0, 1}n and send q to S1
and q + ei to S2.
Now, both servers calculate the inner product of the query with the data it
holds i.e. r1 = (x , q) and r2 = (x , q + ei ) and return it to the user. The
user now calculates the sum of the retrieved data to retrieve xi :
r1 + r2 = (x , q) + (x , q + ei ) = (x , ei ) = xi .
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PIR Codes

Classically in PIR schemes, the whole database is replicated among all the
servers.

In 2015 Fazeli, Vardy and Yaakobi introduced the concept of PIR codes to
get the same result with lower storage overhead, which is defined as the
ratio between the total number of bits stored on all the servers and the
number of bits in the database.
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PIR codes

Example

We partition the database x = (x1, . . . , xn) into two parts: x = (x (1), x (2))
and store these parts in three servers T1, T2 and T3.

We store x (1) in T1,
x (2) in T2 and x (1) + x (2) in T3 i.e. according to the generator matrix

G =

(
1 0 1
0 1 1

)
.

Suppose we want to retrieve xi = x
(1)
j . We have two copies of x (1)

available: one in T1 and one by adding the data in T2 and T3. We send q
to T1 and q + ei to T2 and T3. We retrieve

r1 = (x (1), q), r2 = (x (2), q + ei ), r3 = (x (1) + x (2), q + ei ).

Now, (x (1), q + ei ) = r2 + r3 and

r1 + (r2 + r3) = (x (1), q) + (x (1), q + ei ) = (x (1), ei ) = xi .
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PIR Codes

The previous example justifies the following definition:

Definition
Let C be a k-dimensional linear subspace of Fn

2. We call a generator matrix
G ∈ Matk,n(F2) of C a (binary) (k , t)-PIR code if it has the following
property:
for every 1 ≤ i ≤ k , there exist t disjoint sets of column indices
I1, ..., It ⊆ [n] := {1, . . . , n} such that for every 1 ≤ j ≤ t, the columns of
G with indices from Ij sum up to ei .

Clearly, the higher the value of t, the more accessible the data (e.g. if some
servers were to go down or if the data demand is high).
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UDD PIR Codes

The previous observation brings us to the concept of unequal-data-demand
(UDD) PIR codes.

Regular PIR codes are designed for cases where all items in the database
are of the same importance

But what if some pieces of data are in much higher demand than others?

It would make sense to have more possibilities to recover these pieces of
data
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UDD PIR Codes

Definition
Let C be a k-dimensional linear subspace of Fn

2. We call a generator matrix
G ∈ Matk,n(F2) of C a (binary) (k , (t1, . . . , tk))-UDD PIR code if it has
the following property:

for every 1 ≤ i ≤ k , there exist ti disjoint sets of column indices
I1, ..., Iti ⊆ [n] := {1, . . . , n} such that for every 1 ≤ j ≤ ti , the columns of
G with indices from Ij sum up to ei .

We usually call a (k , (t1, . . . , tk))-UDD PIR code simply a
(t1, . . . , tk)-UDD code. Also, we henceforth always assume t1 ≥ . . . ≥ tk .
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UDD PIR Codes

Example
Consider the generator matrix

G =

1 1 0 0 1
0 0 1 0 1
0 0 0 1 1

 .

Numbering the columns from left to right, we have the following recovery
sets for e1, e2 and e3:

e1 : {1}, {2}, {3, 4, 5}
e2 : {3}, {1, 4, 5},
e3 : {4}, {1, 3, 5}.

Thus, we call G a (3, (3, 2, 2))-UDD PIR code.
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UDD PIR Codes

We denote by P(k, (t1, . . . , tk)) the shortest possible length of a
(t1, . . . , tk)-UDD code.

Problem
Let k ∈ N and T = (t1, . . . , tk) with t1, . . . , tk ∈ N ∪ {0} and
t1 ≥ . . . ≥ tk . How long is the shortest T -UDD code i.e. what is the value
of P(k ,T )?
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Griesmer bound

It can easily be shown that every t-PIR code has distance at least t. Thus,
the following theorem holds:

Theorem (Griesmer Bound for PIR codes)
Let k , t ∈ N. Then

P(k, t) ≥
k∑

i=1

⌈ t

2i−1

⌉
.

A similar bound holds for UDD codes:

Theorem
Griesmer Bound for UDD PIR codes Let k ∈ N and t1 ≥ . . . ≥ tk ≥ 0.
Then

P(k, (t1, . . . , tk)) ≥
k∑

i=1

⌈ ti
2i−1

⌉
.
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Griesmer Bound

Example
In the previous example, we had a (3, 2, 2)-UDD code of length 5, given by
the matrix

G =

1 1 0 0 1
0 0 1 0 1
0 0 0 1 1

 .

The Griesmer bound says that P(3, (3, 2, 2)) ≥ 3 +

⌈
2
2

⌉
+

⌈
2
4

⌉
= 5, so G

is of the minimal possible length.
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First Proof of the Griesmer Bound

Lemma
Let t1 ≥ . . . ≥ tk ≥ 0 and G = (gij) be a matrix for a (t1, . . . , tk)-UDD
code. Then G has a separation vector of (S(G )1, . . . ,S(G )k) where
S(G )i ≥ ti for all i ∈ [k].

Theorem (Griesmer Bound for UDD PIR codes)
Let k ∈ N and t1 ≥ . . . ≥ tk . Then

P(k , (t1, . . . , tk)) ≥
k∑

i=1

⌈ ti
2i−1

⌉
.

Proof. Let G be the matrix form of a (t1, . . . , tk)-UDD code. Then G is a
generator matrix for an [n, k] linear code with the separation vector
(S(G )1, . . . ,S(G )k) by the previous lemma. Now the bound follows from
the Griesmer bound for UEP codes. □
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Second Proof of the Griesmer Bound

Let Hk denote the (2k − 1)-by-(2k − 1) matrix of scalar products of the
non-zero vectors in Fk

2 , ordered by their binary representations. Then the
following lemma holds.

Lemma

1. Adding any two odd-numbered rows of Hk (in F2k−1
2 ) gives an

even-numbered row of Hk .
2. Let k ≥ 2 and i be odd. The submatrix which consists of the columns
where there is 0 in the i-th row and of all the even-numbered rows of Hk is
Hk−1.
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Second Proof of the Griesmer Bound

Example

H2 =

1 0 1
0 1 1
1 1 0

 H3 =



1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1
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Second Proof of the Griesmer Bound

Theorem
Griesmer Bound for UDD PIR codes Let k ∈ N and t1 ≥ . . . ≥ tk ≥ 0.
Then

P(k, (t1, . . . , tk)) ≥
k∑

i=1

⌈ ti
2i−1

⌉
.

Proof. Let G be a k-by-n matrix corresponding to a (t1, . . . , tk)-UDD
code, where t1 ≥ . . . ≥ tk .

Suppose that G has ai columns of the form
i = (ik−1, . . . , i0)

T where i = i0 + i1 · 2 + . . .+ ik−12k−1, the binary
representation of i . Clearly

n =
2k−1∑
i=1

ai .
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Second Proof the Griesmer Bound

By assumption. the unit vector ej can be written in tj ways as a sum of
columns of G .

Let h ∈ Fk
2 \ {0}, then h⊥ ≤ Fk

2 is a hyperplane. Now, if ej is not an
element of the hyperplane h⊥, then each of the tj recovery sets for ej must
include a column which is not it h⊥. This gets us a system of inequalities
for a1, . . . , a2k−1.
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The proof now continues by induction. The bound clearly holds for k = 1
with any t1 ∈ N. We show the induction step for k = 3, the process is
identical for a general k ≥ 2.

We have the following system of inequalities:

a1 + a3 + a5 + a7 ≥ t1

a2 + a3 + a6 + a7 ≥ t2

a1 + a2 + a5 + a6 ≥ t1

a4 + a5 + a6 + a7 ≥ t3

a1 + a3 + a4 + a6 ≥ t1

a2 + a3 + a4 + a7 ≥ t2

a1 + a2 + a4 + a7 ≥ t1

The variable a1 appears only in the inequalities for t1. If none of these
inequalities were tight, we could reduce a1 by one and still get a solution.
We therefore w.l.o.g. assume that one of these inequalities is tight. We
subtract this equality from all the other inequalities with t1.
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inequalities were tight, we could reduce a1 by one and still get a solution.
We therefore w.l.o.g. assume that one of these inequalities is tight. We
subtract this equality from all the other inequalities with t1.

Martin Puškin, Henk D.L. Hollmann, Ago-Erik Riet (University of Tartu)On Unequal Data Demand PIR Codes 2022 25 / 34



First Proof of the Griesmer Bound

In the case where the first inequality is actually an equality, we get the
following system:

a1 + a3 + a5 + a7 ≥ t1

a2 + a3 + a6 + a7 ≥ t2

a2 − a3 + a6 − a7 ≥ 0
a4 + a5 + a6 + a7 ≥ t3

a4 − a5 + a6 − a7 ≥ 0
a2 + a3 + a4 + a7 ≥ t2

a2 − a3 + a4 − a5 ≥ 0
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Adding the 2. and 3. inequality, the 4. and 5. inequality and the 6. and 7.
inequality, we get the new system with the matrix H2 (the previous lemma
justifies these steps in the general case).

2a2 + 2a6 ≥ t2

2a4 + 2a6 ≥ t3

2a2 + 2a4 ≥ t2

The result now quickly follows from the induction hypothesis. □

As every error-correction code is a UEP code and every UEP code is a
UDD code, this is a completely new proof for the Griesmer bound for UEP
codes and error-correction codes.
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Optimality of the Griesmer Bound for k ≤ 3

For k ≤ 3, the Griesmer bound can always be achieved.

We show this for k = 3, then k ≤ 2 follows directly. In order to do this, we
first show optimal constructions for a few special codes:
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Optimality of the Griesmer Bound for k ≤ 3

An optimal (1, 1, 0)-UDD code is G =

1 0
0 1
0 0

.

An optimal (1, 1, 1)-UDD code is G =

1 0 0
0 1 0
0 0 1

.

An optimal (2, 2, 2)-UDD code is G =

1 0 0 1
0 1 0 1
0 0 1 1

.

An optimal (3, 3, 3)-UDD code is G =

1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

.

An optimal (4, 4, 4)-UDD code is G =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

.
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Optimality of the Griesmer Bound for k ≤ 3

A code of length G (t1, t2, t3) can be generated from the previous codes for
every t1 ≥ t2 ≥ t3.

Assume we have a (t1, t2, t3)-UDD code with length G (t1, t2, t3).
1. As G (t1 + 1, t2, t3) = G (t1, t2, t3) + 1, we can get a
(t1 + 1, t2, t3)-UDD code of length G (t1 + 1, t2, t3) just by adding a
column (1, 0, 0)T .
2. As G (t1 + 2, t2 + 2, t3) = G (t1, t2, t3) + 3 we can get a
(t1 + 2, t2 + 2, t3)-UDD code of length G (t1 + 2, t2 + 2, t3) by adding
the columns (1, 0, 0)T , (0, 1, 0)T and (1, 1, 0)T .
3. As G (t1 + 4, t2 + 4, t3 + 4) = G (t1, t2, t3) + 7, we can get a code
of length G (t1 + 4, t2 + 4, t3 + 4) for T = (t1 + 4, t2 + 4, t3 + 4) by
adding one of each non-zero column.
4. As G (t1, t2, 4m) = G (t1, t2, 4m − 1) = G (t1, t2, 4m − 2) =
G (t1, t2, 4m − 3), we can round t3 up to min{t2, 4m} where 4m is the
smallest multiple of 4 larger than t3.
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Optimality of the Griesmer Bound for k ≤ 3

The previous slide provides an algorithm to generate an optimal matrix for
any triple t1 ≥ t2 ≥ t3.

Example
Let (t1, t2, t3) = (10, 9, 5). We construct a (10, 9, 5)-UDD code of length
G (10, 9, 5) = 17:

First we add
⌊ t3

4

⌋
= 1 simplex code (all non-zero columns). This adds

7 columns to G and adds 4 recovery sets for each unit vector. We now
need a (6, 5, 1)-UDD code.

We add
⌊
t ′2 − t ′3

2

⌋
= 2 of each vector e1, e2 and e1 + e2. This adds 6

columns to G and 4 recovery sets for e1, e2. We now need a
(2, 1, 1)-UDD code.
We add t ′′2 − t ′′1 = 1 of e1 which reduces us to finding an optimal
(1, 1, 1)-UDD code. This was done 2 slides ago.
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Optimality of the Griesmer Bound for k ≤ 3

Example
We get the following matrix:

G =

 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

 .
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Thank you!

Questions?
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