
Quantum majority vote

|ψ⟩ |ψ⊥⟩ |ψ⊥⟩ |ψ⟩ |ψ⟩

QuSoft & University of Amsterdam
Māris Ozols

Contents

Quantum majority vote
Joint work with:
▶ Harry Buhrman (QuSoft & CWI)
▶ Laura Mančinska (University of Copenhagen)
▶ Noah Linden (University of Bristol)
▶ Ashley Montanaro (Phasecraft & University of Bristol)

Linear programming with unitary-equivariant constraints
Joint work with:
▶ Dmitry Grinko (QuSoft & University of Amsterdam)

Manifesto
▶ All information is quantum. . .

▶ . . . there is no classical information
▶ Algorithm = CPTP map
▶ Classical computer science is dead!

1

0

Φ

1

0

Manifesto
▶ All information is quantum. . .
▶ . . . there is no classical information

▶ Algorithm = CPTP map
▶ Classical computer science is dead!

1

0

Φ

1

0

Manifesto
▶ All information is quantum. . .
▶ . . . there is no classical information

▶ Algorithm = CPTP map
▶ Classical computer science is dead!

1

0

Φ

1

0

Manifesto
▶ All information is quantum. . .
▶ . . . there is no classical information
▶ Algorithm = CPTP map

▶ Classical computer science is dead!

1

0

Φ

1

0

Manifesto
▶ All information is quantum. . .
▶ . . . there is no classical information
▶ Algorithm = CPTP map
▶ Classical computer science is dead!

1

0

Φ

1

0

Manifesto (lite)

15 3 · 5

Manifesto (lite)

|ψ⟩ |ψ′⟩

▶ quantum Fourier transform
▶ Grover iteration
▶ swap test
▶ . . .

Manifesto (lite)

|ψ⟩ |ψ′⟩

▶ quantum Fourier transform
▶ Grover iteration
▶ swap test
▶ . . .

Manifesto (lite)

|ψ⟩ |ψ′⟩

New quantum primitives!

▶ quantum Fourier transform
▶ Grover iteration
▶ swap test
▶ . . .

Majority vote

0 1 1 0 0

▶ success amplification
▶ error correction
▶ democracy

Majority vote

0 1 1 0 0

▶ success amplification
▶ error correction
▶ democracy

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩

|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩

|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩

|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩

U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩

U
|ψ⟩|ψ⟩|ψ

⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Quantum majority vote

|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⊥⟩|ψ⟩|ψ⟩|ψ⟩

|ψ⟩

Computation in an unknown basis

|0⟩|0⟩|1⟩

|ψ⟩
U

|ψ⟩|ψ⟩|ψ
⊥⟩

|0⟩

Equivariance

Unitary equivariance
Computing f : {0, 1}n → {0, 1} in a unitary-equivariant way:

U⊗n

|x⟩ 7→

U

|f (x)⟩ ∀x ∈ {0, 1}n

, U ∈ U(2)

XOR of two bits |0⟩ ⊗ |1⟩ 7→ |1⟩

U|0⟩ ⊗ U|1⟩ 7→ U|1⟩

|1⟩ ⊗ |0⟩ 7→ |0⟩

Equivariant functions
f : {0, 1}n → {0, 1} is equivariant (or self-dual) if

f (x) = f (x)

Equivariance

Unitary equivariance
Computing f : {0, 1}n → {0, 1} in a unitary-equivariant way:

U⊗n|x⟩ 7→ U|f (x)⟩ ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0⟩ ⊗ |1⟩ 7→ |1⟩

U|0⟩ ⊗ U|1⟩ 7→ U|1⟩

|1⟩ ⊗ |0⟩ 7→ |0⟩

Equivariant functions
f : {0, 1}n → {0, 1} is equivariant (or self-dual) if

f (x) = f (x)

Equivariance

Unitary equivariance
Computing f : {0, 1}n → {0, 1} in a unitary-equivariant way:

U⊗n|x⟩ 7→ U|f (x)⟩ ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0⟩ ⊗ |1⟩ 7→ |1⟩

U|0⟩ ⊗ U|1⟩ 7→ U|1⟩

|1⟩ ⊗ |0⟩ 7→ |0⟩

Equivariant functions
f : {0, 1}n → {0, 1} is equivariant (or self-dual) if

f (x) = f (x)

Equivariance

Unitary equivariance
Computing f : {0, 1}n → {0, 1} in a unitary-equivariant way:

U⊗n|x⟩ 7→ U|f (x)⟩ ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0⟩ ⊗ |1⟩ 7→ |1⟩

U|0⟩ ⊗ U|1⟩ 7→ U|1⟩

|1⟩ ⊗ |0⟩ 7→ |0⟩

Equivariant functions
f : {0, 1}n → {0, 1} is equivariant (or self-dual) if

f (x) = f (x)

Equivariance

Unitary equivariance
Computing f : {0, 1}n → {0, 1} in a unitary-equivariant way:

U⊗n|x⟩ 7→ U|f (x)⟩ ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0⟩ ⊗ |1⟩ 7→ |1⟩

X|0⟩ ⊗ X|1⟩ 7→ X|1⟩

|1⟩ ⊗ |0⟩ 7→ |0⟩

Equivariant functions
f : {0, 1}n → {0, 1} is equivariant (or self-dual) if

f (x) = f (x)

Equivariance

Unitary equivariance
Computing f : {0, 1}n → {0, 1} in a unitary-equivariant way:

U⊗n|x⟩ 7→ U|f (x)⟩ ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0⟩ ⊗ |1⟩ 7→ |1⟩

X|0⟩ ⊗ X|1⟩ 7→ X|1⟩

|1⟩ ⊗ |0⟩ 7→ |0⟩

Equivariant functions
f : {0, 1}n → {0, 1} is equivariant (or self-dual) if

f (x) = f (x)

Equivariance

Unitary equivariance
Computing f : {0, 1}n → {0, 1} in a unitary-equivariant way:

U⊗n|x⟩ 7→ U|f (x)⟩ ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0⟩ ⊗ |1⟩ 7→ |1⟩

X|0⟩ ⊗ X|1⟩ 7→ X|1⟩

|1⟩ ⊗ |0⟩ 7→ |0⟩

Equivariant functions
f : {0, 1}n → {0, 1} is equivariant (or self-dual) if

f (x) = f (x)

Equivariance

Unitary equivariance
Computing f : {0, 1}n → {0, 1} in a unitary-equivariant way:

U⊗n|x⟩ 7→ U|f (x)⟩ ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0⟩ ⊗ |1⟩ 7→ |1⟩

X|0⟩ ⊗ X|1⟩ 7→ X|1⟩

|1⟩ ⊗ |0⟩ 7→ |0⟩

Equivariant functions
f : {0, 1}n → {0, 1} is equivariant (or self-dual) if

f (x) = f (x)

Equivariance

Unitary equivariance
Computing f : {0, 1}n → {0, 1} in a unitary-equivariant way:

U⊗n|x⟩ 7→ U|f (x)⟩ ∀x ∈ {0, 1}n, U ∈ U(2)

XOR of two bits |0⟩ ⊗ |1⟩ 7→ |1⟩

X|0⟩ ⊗ X|1⟩ 7→ X|1⟩

|1⟩ ⊗ |0⟩ 7→ |0⟩

Equivariant functions
f : {0, 1}n → {0, 1} is equivariant (or self-dual) if

f (x) = f (x)

Symmetric functions

Assumption
f (x) depends only on the Hamming weight of x ∈ {0, 1}n

Example: n = 3

|x| 0 1 2 3
f (x) 0 0 1 1

Even n is bad

f (0, 1) = f (1, 0) = f (0, 1)

Symmetric functions

Assumption
f (x) depends only on the Hamming weight of x ∈ {0, 1}n

Example: n = 3

|x| 0 1 2 3
f (x) 0 0 1 1

Even n is bad

f (0, 1) = f (1, 0) = f (0, 1)

Symmetric functions

Assumption
f (x) depends only on the Hamming weight of x ∈ {0, 1}n

Example: n = 3

|x| 0 1 2 3
f (x) 0 0 1 1

Even n is bad

f (0, 1) = f (1, 0) = f (0, 1)

Problem

Assumptions
Given f : {0, 1}n → {0, 1}, assume
▶ f is equivariant
▶ f is symmetric
▶ n is odd

Goal
Given U⊗n|x⟩, for an unknown U ∈ U(2) and x ∈ {0, 1}n,
produce ρ that is close to U|f (x)⟩

Worst-case fidelity

Ff := max
Φ

min
x,U

⟨f (x)|U† Φ
(

U⊗n|x⟩⟨x|U†⊗n
)

U|f (x)⟩

Problem

Assumptions
Given f : {0, 1}n → {0, 1}, assume
▶ f is equivariant
▶ f is symmetric
▶ n is odd

Goal
Given U⊗n|x⟩, for an unknown U ∈ U(2) and x ∈ {0, 1}n,
produce ρ that is close to U|f (x)⟩

Worst-case fidelity

Ff := max
Φ

min
x,U

⟨f (x)|U† Φ
(

U⊗n|x⟩⟨x|U†⊗n
)

U|f (x)⟩

Problem

Assumptions
Given f : {0, 1}n → {0, 1}, assume
▶ f is equivariant
▶ f is symmetric
▶ n is odd

Goal
Given U⊗n|x⟩, for an unknown U ∈ U(2) and x ∈ {0, 1}n,
produce ρ that is close to U|f (x)⟩

Worst-case fidelity

Ff := max
Φ

min
x,U

⟨f (x)|U† Φ
(

U⊗n|x⟩⟨x|U†⊗n
)

U|f (x)⟩

Results on majority

Trivial strategy: Output any qubit at random

No promise Promise

1
2
+

1
2n

5
6

Trivial

1
2
+ Θ

(
1√
n

)
1 − Θ

(
1
n

)
Optimal

0 nn
2 0 nn

2

n/3n/3

Results on majority

Trivial strategy: Output any qubit at random

No promise Promise

1
2
+

1
2n

5
6

Trivial

1
2
+ Θ

(
1√
n

)
1 − Θ

(
1
n

)
Optimal

0 nn
2 0 nn

2

n/3n/3

Results on majority

Trivial strategy: Output any qubit at random

No promise Promise

1
2
+

1
2n

5
6

Trivial

1
2
+ Θ

(
1√
n

)
1 − Θ

(
1
n

)
Optimal

0 nn
2 0 nn

2

n/3n/3

Results on majority

Trivial strategy: Output any qubit at random

No promise Promise

1
2
+

1
2n

5
6

Trivial

1
2
+ Θ

(
1√
n

)
1 − Θ

(
1
n

)
Optimal

0 nn
2 0 nn

2

n/3n/3

Symmetric / anti-symmetric subspace of C2 ⊗ C2

Symmetric states:

(
a b
c d

)⊗2

|00⟩ =


a2

ac
ca
c2

 = a2 |00⟩

0

+
√

2ac
|01⟩+ |10⟩√

2

1

+ c2 |11⟩

2

Anti-symmetric state (singlet):

|Ψ−⟩ :=
|01⟩ − |10⟩√

2(
a b
c d

)⊗2

|Ψ−⟩ = (ad − bc)|Ψ−⟩

Symmetric / anti-symmetric subspace of C2 ⊗ C2

Symmetric states:

(
a b
c d

)⊗2

|00⟩ =


a2

ac
ca
c2

 = a2 |00⟩

0

+
√

2ac
|01⟩+ |10⟩√

2

1

+ c2 |11⟩

2

Anti-symmetric state (singlet):

|Ψ−⟩ :=
|01⟩ − |10⟩√

2(
a b
c d

)⊗2

|Ψ−⟩ = (ad − bc)|Ψ−⟩

Symmetric / anti-symmetric subspace of C2 ⊗ C2

Symmetric states:

(
a b
c d

)⊗2

|00⟩ =


a2

ac
ca
c2

 = a2 |00⟩

0

+
√

2ac
|01⟩+ |10⟩√

2

1

+ c2 |11⟩

2

Anti-symmetric state (singlet):

|Ψ−⟩ :=
|01⟩ − |10⟩√

2

(
a b
c d

)⊗2

|Ψ−⟩ = (ad − bc)|Ψ−⟩

Symmetric / anti-symmetric subspace of C2 ⊗ C2

Symmetric states:

(
a b
c d

)⊗2

|00⟩ =


a2

ac
ca
c2

 = a2 |00⟩

0

+
√

2ac
|01⟩+ |10⟩√

2

1

+ c2 |11⟩

2

Anti-symmetric state (singlet):

|Ψ−⟩ :=
|01⟩ − |10⟩√

2(
a b
c d

)⊗2

|Ψ−⟩ = (ad − bc)|Ψ−⟩

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad − bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2



USch SWAP U†
Sch = diag(−1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad − bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2



USch SWAP U†
Sch = diag(−1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad − bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2



USch SWAP U†
Sch = diag(−1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad − bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2



USch SWAP U†
Sch = diag(−1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad − bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2



USch SWAP U†
Sch = diag(−1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad − bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2


USch SWAP U†

Sch = diag(−1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad − bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2


USch SWAP U†

Sch = diag(−1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad − bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2


USch SWAP U†

Sch = diag(−1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on two qubits

USch :=


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0
0 0 0 1



USch

(
a b
c d

)⊗2

U†
Sch =


ad − bc 0 0 0

0 a2
√

2ab b2

0
√

2ac ad + bc
√

2bd
0 c2

√
2cd d2


USch SWAP U†

Sch = diag(−1, 1, 1, 1)

Each block defines a homomorphism: Q(MN) = Q(M)Q(N)

Schur transform on n qubits

USch : (C2)⊗n →
⊕
λ⊢n

[
Cmλ ⊗ Cdλ

]

USchM⊗nU†
Sch =

⊕
λ⊢n

[
Qλ(M)⊗ Idλ

]
, M =

(
a b
c d

)
USchπU†

Sch =
⊕
λ⊢n

[Imλ
⊗ Pλ(π)], π ∈ Sn

Can be implemented with O(n4 log n) gates
(Kirby & Strauch, 2017)

Schur transform on n qubits

USch : (C2)⊗n →
⊕
λ⊢n

[
Cmλ ⊗ Cdλ

]
USchM⊗nU†

Sch =
⊕
λ⊢n

[
Qλ(M)⊗ Idλ

]
, M =

(
a b
c d

)

USchπU†
Sch =

⊕
λ⊢n

[Imλ
⊗ Pλ(π)], π ∈ Sn

Can be implemented with O(n4 log n) gates
(Kirby & Strauch, 2017)

Schur transform on n qubits

USch : (C2)⊗n →
⊕
λ⊢n

[
Cmλ ⊗ Cdλ

]
USchM⊗nU†

Sch =
⊕
λ⊢n

[
Qλ(M)⊗ Idλ

]
, M =

(
a b
c d

)
USchπU†

Sch =
⊕
λ⊢n

[Imλ
⊗ Pλ(π)], π ∈ Sn

Can be implemented with O(n4 log n) gates
(Kirby & Strauch, 2017)

Schur transform on n qubits

USch : (C2)⊗n →
⊕
λ⊢n

[
Cmλ ⊗ Cdλ

]
USchM⊗nU†

Sch =
⊕
λ⊢n

[
Qλ(M)⊗ Idλ

]
, M =

(
a b
c d

)
USchπU†

Sch =
⊕
λ⊢n

[Imλ
⊗ Pλ(π)], π ∈ Sn

Can be implemented with O(n4 log n) gates
(Kirby & Strauch, 2017)

Algorithm

U⊗n|x⟩⟨x|U†⊗n

7→ USch ∑
i

M⊗n
i U†

Sch =
⊕
λ⊢n

[
∑

i
Qλ(Mi)⊗ Idλ

]

Input: U⊗n|x⟩ with unknown x ∈ {0, 1}n and U ∈ U(2)

0. (Apply a random permutation π ∈ Sn)
1. Apply Schur transform USch

2. Measure λ ⊢ n (weak Schur sampling)
3. Discard the permutation register
4. Apply some U(2)-equivariant channel with 1-qubit output

▶ Steps 1–3 are reversible (generic pre-processing)
▶ Only step 4 depends on f
▶ All steps are equivariant
▶ Step 4 acts on a state of random dimension mλ

Algorithm

U⊗n|x⟩⟨x|U†⊗n 7→

USch

∑
i

M⊗n
i

U†
Sch =

⊕
λ⊢n

[
∑

i
Qλ(Mi)⊗ Idλ

]

Input: U⊗n|x⟩ with unknown x ∈ {0, 1}n and U ∈ U(2)

0. (Apply a random permutation π ∈ Sn)

1. Apply Schur transform USch

2. Measure λ ⊢ n (weak Schur sampling)
3. Discard the permutation register
4. Apply some U(2)-equivariant channel with 1-qubit output

▶ Steps 1–3 are reversible (generic pre-processing)
▶ Only step 4 depends on f
▶ All steps are equivariant
▶ Step 4 acts on a state of random dimension mλ

Algorithm

U⊗n|x⟩⟨x|U†⊗n 7→ USch ∑
i

M⊗n
i U†

Sch

=
⊕
λ⊢n

[
∑

i
Qλ(Mi)⊗ Idλ

]

Input: U⊗n|x⟩ with unknown x ∈ {0, 1}n and U ∈ U(2)

0. (Apply a random permutation π ∈ Sn)
1. Apply Schur transform USch

2. Measure λ ⊢ n (weak Schur sampling)
3. Discard the permutation register
4. Apply some U(2)-equivariant channel with 1-qubit output

▶ Steps 1–3 are reversible (generic pre-processing)
▶ Only step 4 depends on f
▶ All steps are equivariant
▶ Step 4 acts on a state of random dimension mλ

Algorithm

U⊗n|x⟩⟨x|U†⊗n 7→ USch ∑
i

M⊗n
i U†

Sch =
⊕
λ⊢n

[
∑

i
Qλ(Mi)⊗ Idλ

]

Input: U⊗n|x⟩ with unknown x ∈ {0, 1}n and U ∈ U(2)

0. (Apply a random permutation π ∈ Sn)
1. Apply Schur transform USch

2. Measure λ ⊢ n (weak Schur sampling)
3. Discard the permutation register
4. Apply some U(2)-equivariant channel with 1-qubit output

▶ Steps 1–3 are reversible (generic pre-processing)
▶ Only step 4 depends on f
▶ All steps are equivariant
▶ Step 4 acts on a state of random dimension mλ

Algorithm

U⊗n|x⟩⟨x|U†⊗n 7→ USch ∑
i

M⊗n
i U†

Sch =
⊕
λ⊢n

[
∑

i
Qλ(Mi)⊗ Idλ

]

Input: U⊗n|x⟩ with unknown x ∈ {0, 1}n and U ∈ U(2)

0. (Apply a random permutation π ∈ Sn)
1. Apply Schur transform USch

2. Measure λ ⊢ n (weak Schur sampling)

3. Discard the permutation register
4. Apply some U(2)-equivariant channel with 1-qubit output

▶ Steps 1–3 are reversible (generic pre-processing)
▶ Only step 4 depends on f
▶ All steps are equivariant
▶ Step 4 acts on a state of random dimension mλ

Algorithm

U⊗n|x⟩⟨x|U†⊗n 7→ USch ∑
i

M⊗n
i U†

Sch =
⊕
λ⊢n

[
∑

i
Qλ(Mi)⊗ Idλ

]

Input: U⊗n|x⟩ with unknown x ∈ {0, 1}n and U ∈ U(2)

0. (Apply a random permutation π ∈ Sn)
1. Apply Schur transform USch

2. Measure λ ⊢ n (weak Schur sampling)
3. Discard the permutation register

4. Apply some U(2)-equivariant channel with 1-qubit output

▶ Steps 1–3 are reversible (generic pre-processing)
▶ Only step 4 depends on f
▶ All steps are equivariant
▶ Step 4 acts on a state of random dimension mλ

Algorithm

U⊗n|x⟩⟨x|U†⊗n 7→ USch ∑
i

M⊗n
i U†

Sch =
⊕
λ⊢n

[
∑

i
Qλ(Mi)⊗ Idλ

]

Input: U⊗n|x⟩ with unknown x ∈ {0, 1}n and U ∈ U(2)

0. (Apply a random permutation π ∈ Sn)
1. Apply Schur transform USch

2. Measure λ ⊢ n (weak Schur sampling)
3. Discard the permutation register
4. Apply some U(2)-equivariant channel with 1-qubit output

▶ Steps 1–3 are reversible (generic pre-processing)
▶ Only step 4 depends on f
▶ All steps are equivariant
▶ Step 4 acts on a state of random dimension mλ

Algorithm

U⊗n|x⟩⟨x|U†⊗n 7→ USch ∑
i

M⊗n
i U†

Sch =
⊕
λ⊢n

[
∑

i
Qλ(Mi)⊗ Idλ

]

Input: U⊗n|x⟩ with unknown x ∈ {0, 1}n and U ∈ U(2)

0. (Apply a random permutation π ∈ Sn)
1. Apply Schur transform USch

2. Measure λ ⊢ n (weak Schur sampling)
3. Discard the permutation register
4. Apply some U(2)-equivariant channel with 1-qubit output

▶ Steps 1–3 are reversible (generic pre-processing)

▶ Only step 4 depends on f
▶ All steps are equivariant
▶ Step 4 acts on a state of random dimension mλ

Algorithm

U⊗n|x⟩⟨x|U†⊗n 7→ USch ∑
i

M⊗n
i U†

Sch =
⊕
λ⊢n

[
∑

i
Qλ(Mi)⊗ Idλ

]

Input: U⊗n|x⟩ with unknown x ∈ {0, 1}n and U ∈ U(2)

0. (Apply a random permutation π ∈ Sn)
1. Apply Schur transform USch

2. Measure λ ⊢ n (weak Schur sampling)
3. Discard the permutation register
4. Apply some U(2)-equivariant channel with 1-qubit output

▶ Steps 1–3 are reversible (generic pre-processing)
▶ Only step 4 depends on f

▶ All steps are equivariant
▶ Step 4 acts on a state of random dimension mλ

Algorithm

U⊗n|x⟩⟨x|U†⊗n 7→ USch ∑
i

M⊗n
i U†

Sch =
⊕
λ⊢n

[
∑

i
Qλ(Mi)⊗ Idλ

]

Input: U⊗n|x⟩ with unknown x ∈ {0, 1}n and U ∈ U(2)

0. (Apply a random permutation π ∈ Sn)
1. Apply Schur transform USch

2. Measure λ ⊢ n (weak Schur sampling)
3. Discard the permutation register
4. Apply some U(2)-equivariant channel with 1-qubit output

▶ Steps 1–3 are reversible (generic pre-processing)
▶ Only step 4 depends on f
▶ All steps are equivariant

▶ Step 4 acts on a state of random dimension mλ

Algorithm

U⊗n|x⟩⟨x|U†⊗n 7→ USch ∑
i

M⊗n
i U†

Sch =
⊕
λ⊢n

[
∑

i
Qλ(Mi)⊗ Idλ

]

Input: U⊗n|x⟩ with unknown x ∈ {0, 1}n and U ∈ U(2)

0. (Apply a random permutation π ∈ Sn)
1. Apply Schur transform USch

2. Measure λ ⊢ n (weak Schur sampling)
3. Discard the permutation register
4. Apply some U(2)-equivariant channel with 1-qubit output

▶ Steps 1–3 are reversible (generic pre-processing)
▶ Only step 4 depends on f
▶ All steps are equivariant
▶ Step 4 acts on a state of random dimension mλ

Extremal equivariant channels

For each λ ⊢ n, only two extremal unitary-equivariant Cmλ → C2

channels:

λ

tλ 1 − tλ

“partial trace” “universal NOT”

▶ Representation theory of U(2)
▶ A “dual“ Clebsch–Gordan transform
▶ Symmetric subspaces on ℓ vs ℓ+ 1 qubits
▶ O(ℓ log ℓ) gates

Extremal equivariant channels

For each λ ⊢ n, only two extremal unitary-equivariant Cmλ → C2

channels:

λ

tλ 1 − tλ

“partial trace” “universal NOT”

▶ Representation theory of U(2)
▶ A “dual“ Clebsch–Gordan transform
▶ Symmetric subspaces on ℓ vs ℓ+ 1 qubits
▶ O(ℓ log ℓ) gates

Extremal equivariant channels

For each λ ⊢ n, only two extremal unitary-equivariant Cmλ → C2

channels:

λ

tλ 1 − tλ

“partial trace” “universal NOT”

▶ Representation theory of U(2)

▶ A “dual“ Clebsch–Gordan transform
▶ Symmetric subspaces on ℓ vs ℓ+ 1 qubits
▶ O(ℓ log ℓ) gates

Extremal equivariant channels

For each λ ⊢ n, only two extremal unitary-equivariant Cmλ → C2

channels:

λ

tλ 1 − tλ

“partial trace” “universal NOT”

▶ Representation theory of U(2)
▶ A “dual“ Clebsch–Gordan transform

▶ Symmetric subspaces on ℓ vs ℓ+ 1 qubits
▶ O(ℓ log ℓ) gates

Extremal equivariant channels

For each λ ⊢ n, only two extremal unitary-equivariant Cmλ → C2

channels:

λ

tλ 1 − tλ

“partial trace” “universal NOT”

▶ Representation theory of U(2)
▶ A “dual“ Clebsch–Gordan transform
▶ Symmetric subspaces on ℓ vs ℓ+ 1 qubits

▶ O(ℓ log ℓ) gates

Extremal equivariant channels

For each λ ⊢ n, only two extremal unitary-equivariant Cmλ → C2

channels:

λ

tλ 1 − tλ

“partial trace” “universal NOT”

▶ Representation theory of U(2)
▶ A “dual“ Clebsch–Gordan transform
▶ Symmetric subspaces on ℓ vs ℓ+ 1 qubits
▶ O(ℓ log ℓ) gates

Main result

Theorem (with Buhrman, Linden, Mančinska, Montanaro)
For any symmetric and equivariant n-bit boolean function f
▶ the optimal parameters tλ and the resulting fidelity can be

determined by a linear program of size n/2

▶ optimal quantum algorithm with O(n4 log n) gates

Main result

Theorem (with Buhrman, Linden, Mančinska, Montanaro)
For any symmetric and equivariant n-bit boolean function f
▶ the optimal parameters tλ and the resulting fidelity can be

determined by a linear program of size n/2
▶ optimal quantum algorithm with O(n4 log n) gates

Fidelities of all 7-argument functions

|x| 0 1 2 3 4 5 6 7
f (x) 0 1 0 0 1 1 0 1

0 1

0 1

2
3

0

5
9

1

0 1

59
78

0

47
78

1

0

2888
3675

1

1444
1845

0

1141
1845

1

6841
11025

Fidelity depends only on the gap around n/2 in the truth table

Mathematical essence of the problem

Variables
▶ c ∈ R

▶ Φ : C2n×2n → C2×2

Problem
▶ maximize c

Subject to

▶ ⟨f (x)|Φ
(
|x⟩⟨x|

)
|f (x)⟩ ≥ c, ∀x ∈ {0, 1}n

▶ Φ is a quantum channel (CPTP)
▶ Φ is unitary-equivariant
▶ Φ is symmetric

Mathematical essence of the problem

Variables
▶ c ∈ R

▶ Φ : C2n×2n → C2×2

Problem
▶ maximize c

Subject to

▶ ⟨f (x)|Φ
(
|x⟩⟨x|

)
|f (x)⟩ ≥ c, ∀x ∈ {0, 1}n

▶ Φ is a quantum channel (CPTP)
▶ Φ is unitary-equivariant
▶ Φ is symmetric

Mathematical essence of the problem

Variables
▶ c ∈ R

▶ Φ : C2n×2n → C2×2

Problem
▶ maximize c

Subject to

▶ ⟨f (x)|Φ
(
|x⟩⟨x|

)
|f (x)⟩ ≥ c, ∀x ∈ {0, 1}n

▶ Φ is a quantum channel (CPTP)
▶ Φ is unitary-equivariant
▶ Φ is symmetric

Mathematical essence of the problem

Variables
▶ c ∈ R

▶ Φ : C2n×2n → C2×2

Problem
▶ maximize c

Subject to

▶ ⟨f (x)|Φ
(
|x⟩⟨x|

)
|f (x)⟩ ≥ c, ∀x ∈ {0, 1}n

▶ Φ is a quantum channel (CPTP)

▶ Φ is unitary-equivariant
▶ Φ is symmetric

Mathematical essence of the problem

Variables
▶ c ∈ R

▶ Φ : C2n×2n → C2×2

Problem
▶ maximize c

Subject to

▶ ⟨f (x)|Φ
(
|x⟩⟨x|

)
|f (x)⟩ ≥ c, ∀x ∈ {0, 1}n

▶ Φ is a quantum channel (CPTP)
▶ Φ is unitary-equivariant

▶ Φ is symmetric

Mathematical essence of the problem

Variables
▶ c ∈ R

▶ Φ : C2n×2n → C2×2

Problem
▶ maximize c

Subject to

▶ ⟨f (x)|Φ
(
|x⟩⟨x|

)
|f (x)⟩ ≥ c, ∀x ∈ {0, 1}n

▶ Φ is a quantum channel (CPTP)
▶ Φ is unitary-equivariant
▶ Φ is symmetric

Choi matrix

▶ Any linear map Φ : Mat(Hin) → Mat(Hout) can be
represented by its Choi matrix J(Φ) ∈ Mat(Hin ⊗Hout):

J(Φ) :=
dimHin

∑
i,j=1

|i⟩⟨j| ⊗ Φ
(
|i⟩⟨j|

)

▶ We can recover the action of Φ on any ρ ∈ Mat(Hin):

Φ(ρ) = TrHin

(
J(Φ) ·

(
ρT ⊗ IHout

))
▶ Characterization of quantum channels:

J ⪰ 0 (CP) TrHout J = IHin (TP)

Choi matrix

▶ Any linear map Φ : Mat(Hin) → Mat(Hout) can be
represented by its Choi matrix J(Φ) ∈ Mat(Hin ⊗Hout):

J(Φ) :=
dimHin

∑
i,j=1

|i⟩⟨j| ⊗ Φ
(
|i⟩⟨j|

)
▶ We can recover the action of Φ on any ρ ∈ Mat(Hin):

Φ(ρ) = TrHin

(
J(Φ) ·

(
ρT ⊗ IHout

))

▶ Characterization of quantum channels:

J ⪰ 0 (CP) TrHout J = IHin (TP)

Choi matrix

▶ Any linear map Φ : Mat(Hin) → Mat(Hout) can be
represented by its Choi matrix J(Φ) ∈ Mat(Hin ⊗Hout):

J(Φ) :=
dimHin

∑
i,j=1

|i⟩⟨j| ⊗ Φ
(
|i⟩⟨j|

)
▶ We can recover the action of Φ on any ρ ∈ Mat(Hin):

Φ(ρ) = TrHin

(
J(Φ) ·

(
ρT ⊗ IHout

))
▶ Characterization of quantum channels:

J ⪰ 0 (CP) TrHout J = IHin (TP)

Unitary equivariance

▶ Let Φ be a channel from n to m systems of dimension d:

Φ : Mat(Cdn
) → Mat(Cdm

)

▶ Φ is unitary-equivariant if for all ρ ∈ Mat(Cdn
)

Φ(U⊗nρU†⊗n) = U⊗mΦ(ρ)U†⊗m, ∀U ∈ U(d)

▶ Same condition in terms of the Choi matrix of Φ:

[J(Φ), U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(d)

▶ What is the commutant of U⊗n ⊗ Ū⊗m?

Unitary equivariance

▶ Let Φ be a channel from n to m systems of dimension d:

Φ : Mat(Cdn
) → Mat(Cdm

)

▶ Φ is unitary-equivariant if for all ρ ∈ Mat(Cdn
)

Φ(U⊗nρU†⊗n) = U⊗mΦ(ρ)U†⊗m, ∀U ∈ U(d)

▶ Same condition in terms of the Choi matrix of Φ:

[J(Φ), U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(d)

▶ What is the commutant of U⊗n ⊗ Ū⊗m?

Unitary equivariance

▶ Let Φ be a channel from n to m systems of dimension d:

Φ : Mat(Cdn
) → Mat(Cdm

)

▶ Φ is unitary-equivariant if for all ρ ∈ Mat(Cdn
)

Φ(U⊗nρU†⊗n) = U⊗mΦ(ρ)U†⊗m, ∀U ∈ U(d)

▶ Same condition in terms of the Choi matrix of Φ:

[J(Φ), U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(d)

▶ What is the commutant of U⊗n ⊗ Ū⊗m?

Unitary equivariance

▶ Let Φ be a channel from n to m systems of dimension d:

Φ : Mat(Cdn
) → Mat(Cdm

)

▶ Φ is unitary-equivariant if for all ρ ∈ Mat(Cdn
)

Φ(U⊗nρU†⊗n) = U⊗mΦ(ρ)U†⊗m, ∀U ∈ U(d)

▶ Same condition in terms of the Choi matrix of Φ:

[J(Φ), U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(d)

▶ What is the commutant of U⊗n ⊗ Ū⊗m?

Walled Brauer algebra
▶ Bd

n,m consists of formal linear combinations of diagrams:

n = 3 m = 2

▶ dim(Bd
n,m) = (n + m)! since (Bd

n,m)
Γ = C(Sn × Sm)

▶ Multiplication by juxtaposing diagrams:

σ1 =

σ2 =

σ1 σ2 = d ·

Walled Brauer algebra
▶ Bd

n,m consists of formal linear combinations of diagrams:

n = 3 m = 2

▶ dim(Bd
n,m) = (n + m)! since (Bd

n,m)
Γ = C(Sn × Sm)

▶ Multiplication by juxtaposing diagrams:

σ1 =

σ2 =

σ1 σ2 = d ·

Walled Brauer algebra
▶ Bd

n,m consists of formal linear combinations of diagrams:

n = 3 m = 2

▶ dim(Bd
n,m) = (n + m)! since (Bd

n,m)
Γ = C(Sn × Sm)

▶ Multiplication by juxtaposing diagrams:

σ1 =

σ2 =

σ1 σ2 = d ·

Walled Brauer algebra
▶ Bd

n,m consists of formal linear combinations of diagrams:

n = 3 m = 2

▶ dim(Bd
n,m) = (n + m)! since (Bd

n,m)
Γ = C(Sn × Sm)

▶ Multiplication by juxtaposing diagrams:

σ1 =

σ2 =

σ1 σ2 = d ·

From diagrams to matrices

▶ Mapping diagrams to matrices:

ψ : Bd
n,m → Mat(Cdn+m

)

▶ Transposition:

ψ
()

: |i⟩|j⟩ 7→ |j⟩|i⟩, ψ
()

=

(1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
▶ Contraction:

ψ
()

: |i⟩|j⟩ 7→ δi,j

d

∑
k=1

|k⟩|k⟩, ψ
()

=

(1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)

From diagrams to matrices

▶ Mapping diagrams to matrices:

ψ : Bd
n,m → Mat(Cdn+m

)

▶ Transposition:

ψ
()

: |i⟩|j⟩ 7→ |j⟩|i⟩, ψ
()

=

(1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)

▶ Contraction:

ψ
()

: |i⟩|j⟩ 7→ δi,j

d

∑
k=1

|k⟩|k⟩, ψ
()

=

(1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)

From diagrams to matrices

▶ Mapping diagrams to matrices:

ψ : Bd
n,m → Mat(Cdn+m

)

▶ Transposition:

ψ
()

: |i⟩|j⟩ 7→ |j⟩|i⟩, ψ
()

=

(1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
▶ Contraction:

ψ
()

: |i⟩|j⟩ 7→ δi,j

d

∑
k=1

|k⟩|k⟩, ψ
()

=

(1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)

Mixed Schur–Weyl duality

Theorem (Koike 1989, Benkart et al. 1994)
The commutant of U⊗n ⊗ Ū⊗m is equal to ψ(Bd

n,m)

Corollary
The following are equivalent:

▶ Φ : Mat(Cdn
) → Mat(Cdm

) is unitary-equivariant
▶ [J(Φ), U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(d)
▶ J(Φ) ∈ ψ(Bd

n,m)

▶ USch(n,m) J(Φ)U†
Sch(n,m) =

⊕
λ[Iλ ⊗ Jλ(Φ)]

Key insight
When additional permutational symmetry is imposed, each
block Jλ(Φ) becomes diagonal

Mixed Schur–Weyl duality

Theorem (Koike 1989, Benkart et al. 1994)
The commutant of U⊗n ⊗ Ū⊗m is equal to ψ(Bd

n,m)

Corollary
The following are equivalent:
▶ Φ : Mat(Cdn

) → Mat(Cdm
) is unitary-equivariant

▶ [J(Φ), U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(d)
▶ J(Φ) ∈ ψ(Bd

n,m)

▶ USch(n,m) J(Φ)U†
Sch(n,m) =

⊕
λ[Iλ ⊗ Jλ(Φ)]

Key insight
When additional permutational symmetry is imposed, each
block Jλ(Φ) becomes diagonal

Mixed Schur–Weyl duality

Theorem (Koike 1989, Benkart et al. 1994)
The commutant of U⊗n ⊗ Ū⊗m is equal to ψ(Bd

n,m)

Corollary
The following are equivalent:
▶ Φ : Mat(Cdn

) → Mat(Cdm
) is unitary-equivariant

▶ [J(Φ), U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(d)

▶ J(Φ) ∈ ψ(Bd
n,m)

▶ USch(n,m) J(Φ)U†
Sch(n,m) =

⊕
λ[Iλ ⊗ Jλ(Φ)]

Key insight
When additional permutational symmetry is imposed, each
block Jλ(Φ) becomes diagonal

Mixed Schur–Weyl duality

Theorem (Koike 1989, Benkart et al. 1994)
The commutant of U⊗n ⊗ Ū⊗m is equal to ψ(Bd

n,m)

Corollary
The following are equivalent:
▶ Φ : Mat(Cdn

) → Mat(Cdm
) is unitary-equivariant

▶ [J(Φ), U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(d)
▶ J(Φ) ∈ ψ(Bd

n,m)

▶ USch(n,m) J(Φ)U†
Sch(n,m) =

⊕
λ[Iλ ⊗ Jλ(Φ)]

Key insight
When additional permutational symmetry is imposed, each
block Jλ(Φ) becomes diagonal

Mixed Schur–Weyl duality

Theorem (Koike 1989, Benkart et al. 1994)
The commutant of U⊗n ⊗ Ū⊗m is equal to ψ(Bd

n,m)

Corollary
The following are equivalent:
▶ Φ : Mat(Cdn

) → Mat(Cdm
) is unitary-equivariant

▶ [J(Φ), U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(d)
▶ J(Φ) ∈ ψ(Bd

n,m)

▶ USch(n,m) J(Φ)U†
Sch(n,m) =

⊕
λ[Iλ ⊗ Jλ(Φ)]

Key insight
When additional permutational symmetry is imposed, each
block Jλ(Φ) becomes diagonal

Mixed Schur–Weyl duality

Theorem (Koike 1989, Benkart et al. 1994)
The commutant of U⊗n ⊗ Ū⊗m is equal to ψ(Bd

n,m)

Corollary
The following are equivalent:
▶ Φ : Mat(Cdn

) → Mat(Cdm
) is unitary-equivariant

▶ [J(Φ), U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(d)
▶ J(Φ) ∈ ψ(Bd

n,m)

▶ USch(n,m) J(Φ)U†
Sch(n,m) =

⊕
λ[Iλ ⊗ Jλ(Φ)]

Key insight
When additional permutational symmetry is imposed, each
block Jλ(Φ) becomes diagonal

Semidefinite programming with diagrams

Unitary-equivariant SDP

max
X

Tr(CX)

s.t. Tr(AkX) ≤ bk, ∀k ∈ [k1]

TrSk(X) = Dk, ∀k ∈ [k2]

X ⪰ 0

[
X, U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(Cd)

▶ X has size dn+m × dn+m

, e.g., (n, m, d) = (4, 1, 100)

▶ d2(n+m) = 1030 variables

=⇒ (n + m)! = 120 diagrams

▶ ∞ many U(d) constraints

=⇒ X is block-diagonal

Theorem (with Grinko)
Assuming additional permutational symmetry, the above SDP can be
converted to an equivalent LP with at most l ≤ N variables and
k1 + k2N + l constraints where N := (n + m)!

Semidefinite programming with diagrams

Unitary-equivariant SDP

max
X

Tr(CX)

s.t. Tr(AkX) ≤ bk, ∀k ∈ [k1]

TrSk(X) = Dk, ∀k ∈ [k2]

X ⪰ 0[
X, U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(Cd)

▶ X has size dn+m × dn+m

, e.g., (n, m, d) = (4, 1, 100)

▶ d2(n+m) = 1030 variables

=⇒ (n + m)! = 120 diagrams

▶ ∞ many U(d) constraints

=⇒ X is block-diagonal

Theorem (with Grinko)
Assuming additional permutational symmetry, the above SDP can be
converted to an equivalent LP with at most l ≤ N variables and
k1 + k2N + l constraints where N := (n + m)!

Semidefinite programming with diagrams

Unitary-equivariant SDP

max
X

Tr(CX)

s.t. Tr(AkX) ≤ bk, ∀k ∈ [k1]

TrSk(X) = Dk, ∀k ∈ [k2]

X ⪰ 0[
X, U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(Cd)

▶ X has size dn+m × dn+m

, e.g., (n, m, d) = (4, 1, 100)
▶ d2(n+m) = 1030 variables

=⇒ (n + m)! = 120 diagrams

▶ ∞ many U(d) constraints

=⇒ X is block-diagonal

Theorem (with Grinko)
Assuming additional permutational symmetry, the above SDP can be
converted to an equivalent LP with at most l ≤ N variables and
k1 + k2N + l constraints where N := (n + m)!

Semidefinite programming with diagrams

Unitary-equivariant SDP

max
X

Tr(CX)

s.t. Tr(AkX) ≤ bk, ∀k ∈ [k1]

TrSk(X) = Dk, ∀k ∈ [k2]

X ⪰ 0[
X, U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(Cd)

▶ X has size dn+m × dn+m, e.g., (n, m, d) = (4, 1, 100)

▶ d2(n+m) = 1030 variables

=⇒ (n + m)! = 120 diagrams

▶ ∞ many U(d) constraints

=⇒ X is block-diagonal

Theorem (with Grinko)
Assuming additional permutational symmetry, the above SDP can be
converted to an equivalent LP with at most l ≤ N variables and
k1 + k2N + l constraints where N := (n + m)!

Semidefinite programming with diagrams

Unitary-equivariant SDP

max
X

Tr(CX)

s.t. Tr(AkX) ≤ bk, ∀k ∈ [k1]

TrSk(X) = Dk, ∀k ∈ [k2]

X ⪰ 0[
X, U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(Cd)

▶ X has size dn+m × dn+m, e.g., (n, m, d) = (4, 1, 100)
▶ d2(n+m) = 1030 variables

=⇒ (n + m)! = 120 diagrams
▶ ∞ many U(d) constraints

=⇒ X is block-diagonal

Theorem (with Grinko)
Assuming additional permutational symmetry, the above SDP can be
converted to an equivalent LP with at most l ≤ N variables and
k1 + k2N + l constraints where N := (n + m)!

Semidefinite programming with diagrams

Unitary-equivariant SDP

max
X

Tr(CX)

s.t. Tr(AkX) ≤ bk, ∀k ∈ [k1]

TrSk(X) = Dk, ∀k ∈ [k2]

X ⪰ 0[
X, U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(Cd)

▶ X has size dn+m × dn+m, e.g., (n, m, d) = (4, 1, 100)
▶ d2(n+m) = 1030 variables

=⇒ (n + m)! = 120 diagrams

▶ ∞ many U(d) constraints

=⇒ X is block-diagonal

Theorem (with Grinko)
Assuming additional permutational symmetry, the above SDP can be
converted to an equivalent LP with at most l ≤ N variables and
k1 + k2N + l constraints where N := (n + m)!

Semidefinite programming with diagrams

Unitary-equivariant SDP

max
X

Tr(CX)

s.t. Tr(AkX) ≤ bk, ∀k ∈ [k1]

TrSk(X) = Dk, ∀k ∈ [k2]

X ⪰ 0[
X, U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(Cd)

▶ X has size dn+m × dn+m, e.g., (n, m, d) = (4, 1, 100)
▶ d2(n+m) = 1030 variables =⇒ (n + m)! = 120 diagrams
▶ ∞ many U(d) constraints

=⇒ X is block-diagonal

Theorem (with Grinko)
Assuming additional permutational symmetry, the above SDP can be
converted to an equivalent LP with at most l ≤ N variables and
k1 + k2N + l constraints where N := (n + m)!

Semidefinite programming with diagrams

Unitary-equivariant SDP

max
X

Tr(CX)

s.t. Tr(AkX) ≤ bk, ∀k ∈ [k1]

TrSk(X) = Dk, ∀k ∈ [k2]

X ⪰ 0[
X, U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(Cd)

▶ X has size dn+m × dn+m, e.g., (n, m, d) = (4, 1, 100)
▶ d2(n+m) = 1030 variables =⇒ (n + m)! = 120 diagrams
▶ ∞ many U(d) constraints =⇒ X is block-diagonal

Theorem (with Grinko)
Assuming additional permutational symmetry, the above SDP can be
converted to an equivalent LP with at most l ≤ N variables and
k1 + k2N + l constraints where N := (n + m)!

Semidefinite programming with diagrams

Unitary-equivariant SDP

max
X

Tr(CX)

s.t. Tr(AkX) ≤ bk, ∀k ∈ [k1]

TrSk(X) = Dk, ∀k ∈ [k2]

X ⪰ 0[
X, U⊗n ⊗ Ū⊗m] = 0, ∀U ∈ U(Cd)

▶ X has size dn+m × dn+m, e.g., (n, m, d) = (4, 1, 100)
▶ d2(n+m) = 1030 variables =⇒ (n + m)! = 120 diagrams
▶ ∞ many U(d) constraints =⇒ X is block-diagonal

Theorem (with Grinko)
Assuming additional permutational symmetry, the above SDP can be
converted to an equivalent LP with at most l ≤ N variables and
k1 + k2N + l constraints where N := (n + m)!

Connection to Baltic countries

Issai Schur (1875–1941)

▶ Went to school in Liepāja
▶ Schur’s lemma
▶ Schur–Weyl duality
▶ Schur polynomials

Algimantas Adolfas Jucys (1936–1997)

▶ Born in Kaunas, lived in Vilnius
▶ Jucys–Murphy elements of CSn are

central in the Vershik–Okounkov
approach to representation theory of Sn

Connection to Baltic countries

Issai Schur (1875–1941)

▶ Went to school in Liepāja

▶ Schur’s lemma
▶ Schur–Weyl duality
▶ Schur polynomials

Algimantas Adolfas Jucys (1936–1997)

▶ Born in Kaunas, lived in Vilnius
▶ Jucys–Murphy elements of CSn are

central in the Vershik–Okounkov
approach to representation theory of Sn

Connection to Baltic countries

Issai Schur (1875–1941)

▶ Went to school in Liepāja
▶ Schur’s lemma
▶ Schur–Weyl duality
▶ Schur polynomials

Algimantas Adolfas Jucys (1936–1997)

▶ Born in Kaunas, lived in Vilnius
▶ Jucys–Murphy elements of CSn are

central in the Vershik–Okounkov
approach to representation theory of Sn

Connection to Baltic countries

Issai Schur (1875–1941)

▶ Went to school in Liepāja
▶ Schur’s lemma
▶ Schur–Weyl duality
▶ Schur polynomials

Algimantas Adolfas Jucys (1936–1997)

▶ Born in Kaunas, lived in Vilnius

▶ Jucys–Murphy elements of CSn are
central in the Vershik–Okounkov
approach to representation theory of Sn

Connection to Baltic countries

Issai Schur (1875–1941)

▶ Went to school in Liepāja
▶ Schur’s lemma
▶ Schur–Weyl duality
▶ Schur polynomials

Algimantas Adolfas Jucys (1936–1997)

▶ Born in Kaunas, lived in Vilnius
▶ Jucys–Murphy elements of CSn are

central in the Vershik–Okounkov
approach to representation theory of Sn

Open problems

▶ Continuous input instead of |ψ⟩ vs |ψ⊥⟩

▶ Extending to qudits or to multiple outputs
▶ Extending to non-symmetric and partial functions
▶ Connections with regular quantum query complexity
▶ Applications (to cryptography)
▶ Extending from linear to semidefinite programming

Open problems

▶ Continuous input instead of |ψ⟩ vs |ψ⊥⟩
▶ Extending to qudits or to multiple outputs

▶ Extending to non-symmetric and partial functions
▶ Connections with regular quantum query complexity
▶ Applications (to cryptography)
▶ Extending from linear to semidefinite programming

Open problems

▶ Continuous input instead of |ψ⟩ vs |ψ⊥⟩
▶ Extending to qudits or to multiple outputs
▶ Extending to non-symmetric and partial functions

▶ Connections with regular quantum query complexity
▶ Applications (to cryptography)
▶ Extending from linear to semidefinite programming

Open problems

▶ Continuous input instead of |ψ⟩ vs |ψ⊥⟩
▶ Extending to qudits or to multiple outputs
▶ Extending to non-symmetric and partial functions
▶ Connections with regular quantum query complexity

▶ Applications (to cryptography)
▶ Extending from linear to semidefinite programming

Open problems

▶ Continuous input instead of |ψ⟩ vs |ψ⊥⟩
▶ Extending to qudits or to multiple outputs
▶ Extending to non-symmetric and partial functions
▶ Connections with regular quantum query complexity
▶ Applications (to cryptography)

▶ Extending from linear to semidefinite programming

Open problems

▶ Continuous input instead of |ψ⟩ vs |ψ⊥⟩
▶ Extending to qudits or to multiple outputs
▶ Extending to non-symmetric and partial functions
▶ Connections with regular quantum query complexity
▶ Applications (to cryptography)
▶ Extending from linear to semidefinite programming

Thank
you!

