
Dr. Maksim Dimitrijev

with Prof. Andris Ambainis

First, we implement an algorithm called

“Detecting a marked vertex” from paper “Quantum

walk speedup of backtracking algorithms” by

Ashley Montanaro.

Second, we implement an algorithm for DAG

size estimation from paper “Quantum algorithm for

tree size estimation, with applications to

backtracking and 2-player games” by Andris

Ambainis and Martins Kokainis.

We would like to find the assignment of values

of variables that satisfy our constraint satisfaction

problem (CSP), e.g., SAT.

In practice, instances of CSP have some

additional information about its structure. Use of

backtracking allows to have more efficient

classical solution of the problem than brute-force

search.

We implement an algorithm for a quantum walk

on a tree proposed by Ashley Montanaro, that

allows to improve the search on a tree that is

generated by backtracking algorithm.

The walk is based on a set of diffusion

operators 𝐷𝑥, where for each vertex 𝑥, 𝐷𝑥 can be

implemented with only local knowledge, i.e. based

only on whether 𝑥 is marked and the

neighborhood structure of 𝑥.

• If vertex 𝑥 is marked, then 𝐷𝑥 = 𝐼.
• Otherwise, 𝐷𝑥 = 𝐼 − 2 ۧ|𝜓𝑥 |𝜓𝑥ۦ , where ۧ|𝜓𝑥

depends on how many children does 𝑥 has and

whether 𝑥 is a root.

To get 𝐼 − 2 ۧ|𝜓𝑥 |𝜓𝑥ۦ , we need to do the

following sequence:

• apply a transformation that takes ۧ|𝜓𝑥 to ۧ|0 ;

• apply 𝐼 − 2 ۧ|0 ;|0ۦ

• apply a transformation that takes ۧ|0 to ۧ|𝜓𝑥 .

How to implement 𝐼 − 2 ۧ|0 :|0ۦ

The algorithm contains two operators: 𝑅𝐴 for

the set of vertices an even distance from the root

(including the root) and 𝑅𝐵 for the set of vertices

an odd distance from the root. 𝑅𝐴 and 𝑅𝐵 are

formed by direct sums of operators 𝐷𝑥 of

according vertices.

Phase estimation for the operator 𝑅𝐵𝑅𝐴. If our

tree contains a marked vertex, we should

measure the eigenvalue 1 with high probability

(with probability at least 1/2). If tree does not

contain a marked vertex, the probability to

measure the eigenvalue 1 is not exceeding 1/4.

eigenvalue is 𝑒2𝜋𝑖𝜑

𝜑 is our measurement

result

We work on a complete binary tree with a root

and 𝑛 layers. Such implementation requires 2𝑛
qubits for encoding + 1 qubit additionally to

implement 𝐼 − 2 ۧ|0 |0ۦ operation. Root is

represented with basis state |00…00>, first layer

with nodes |0…001> and |0…010>, second layer

with nodes |0…00101>, |0…01001>, |0…00110>,

|0…01010>, and so on.

For each node 𝑥 the generation of ۧ|𝜓𝑥 requires

just 5 gates on 2 qubits, and looks like this:

• Initialize all qubits in state |0ۧ,

• Apply Hadamard-gate to each qubit that will store

outcomes of phase estimation,

• Apply controlled version of 𝑅𝐵𝑅𝐴 on different qubits for

different number of times (according to Phase

estimation procedure),

• Apply inverse QFT to qubits that store the phase

estimation,

• Measure qubits of phase estimation part.

If the root is marked, then algorithm returns

eigenvalue 1 with 100% probability, does not

depend on other marked vertices.

The closer the marked element is to the root,

the higher is the probability to measure the

eigenvalue 1.

The marked elements that are direct or indirect

children of another marked element do not affect

the probability (or at least affect very

insignificantly). Therefore, the branch of marked

elements contributes with almost the same

probability as the marked element of the closest

to the root element of the branch.

The more branches marked elements cover,

the higher probability to observe eigenvalue 1.

Our conclusion is that distance between marked

vertices affects the probability (more precisely –

which ancestor do the marked vertices share).

The more distant the branches of marked

elements are, the higher the probability.

We checked the smallest probability to observe

eigenvalue 1 with 1 marked element. By

implementing Phase estimation with more qubits,

including for smaller trees, we did not observe

probability dropping below 48.8%, therefore,

stated probability of 1/2 is close to be accurate.

With trees that have at least 5 layers, the

number of bits of precision in Phase estimation

being equal to the number of layers in the tree

gives satisfying probabilities. If we have fewer bits

of precision, then in the case of no marked

elements there is high probability (could be even

more than 50%) to observe eigenvalue 1 after the

algorithm, which makes the search procedure

unreliable.

We improved the generation of the circuit for

the Phase Estimation procedure – programmed

controlled 𝑅𝐵𝑅𝐴 manually. We achieved massive

improvement in time and memory usage.

Operators 𝐷𝑥, 𝑅𝐴, 𝑅𝐵 and Phase estimation are

implemented similarly to our previous algorithm

implementation.

This time basis states are denoting

corresponding edges, and so 𝐷𝑥 acts on states

that describe edges that are adjacent to

corresponding vertex 𝑥.

We operate with variable 𝛿 to obtain the

desired precision on our estimate of DAG size.

Picked value of 𝛿 influences other parameters of

the algorithm.

If size of DAG (number of edges) is 𝑥, then we

get an estimate in the interval [𝑥 1 − 𝛿 ; 𝑥(1 + 𝛿)]
with high probability.

𝑛 is distance from the root to farthest leaf (depth),

𝑇0 is an upper bound on the number of edges (we

put it as 2𝑛+1), 𝛼 = 2𝑛𝛿−1. Then, according to the

paper, we calculate 𝛿𝑚𝑖𝑛 =
𝛿1.5

4 3𝑛𝑇0
, and so we

determine the number 𝑏𝑖𝑡𝑠_𝑜𝑓_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = log
1

𝛿𝑚𝑖𝑛

as the number of bits (qubits) of precision for Phase

estimation procedure.

At the end of algorithm, we receive bit values for

estimate 𝜃, convert it into decimal_value, and then

calculate 𝜃 = 2𝜋
decimal_value

2𝑏𝑖𝑡𝑠_𝑜𝑓_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
. The final step is to

put the value into the formula: 𝑇 =
1

𝛼2𝑠𝑖𝑛2
𝜃

2

.

▶ num_of_layers = 2

▶ delta = 0.058 (log
1

𝛿𝑚𝑖𝑛
= 10.954186184662351)

▶ bits_of_precision = 11

remove_pair_count = 0

result: 6.022503402362584

remove_pair_count = 1

result: 4.056179178108383

remove_pair_count = 2

result: 2.0418953507631263

▶ num_of_layers = 2

▶ delta = 0.085 (log
1

𝛿𝑚𝑖𝑛
=10.127071273147157)

▶ bits_of_precision = 11

remove_pair_count = 0

result: 5.944400519641597

remove_pair_count = 1

result: 4.095208278612878

remove_pair_count = 2

result: 2.0188273769201137

▶ num_of_layers = 4

▶ delta = 0.25

▶ bits_of_precision = 9
remove_pair_count = 0

result: 33.21134408379512

'000000101': 4336, '111111011': 4248, '000000110': 265, '111111010': 260

remove_pair_count = 1

result: 33.2113440837946 (next closest result is: 23.06661772426938)

'111111011': 3002, '000000101': 2939, '111111010': 1173, '000000110': 1117

remove_pair_count = 2

result: 23.06661772426938 (next closest result is: 33.2113440837946)

'000000110': 2724, '111111010': 2710, '111111011': 1360, '000000101': 1301

remove_pair_count = 3

result: 23.06661772426938

'000000110': 4412, '111111010': 4298, '111111011': 225, '000000101': 223

remove_pair_count = 4

result: 23.06661772426938

'111111010': 4902, '000000110': 4715, '010011000': 62, '101101000': 62

▶ num_of_layers = 4

▶ delta = 0.25

▶ bits_of_precision = 9
remove_pair_count = 5

result: 23.06661772426938 (next closest result is: 16.94966819277659)

'111111010': 3127, '000000110': 3061, '111111001': 1061, '000000111': 1021

remove_pair_count = 6

result: 16.949668192776745 (next closest result is: 23.06661772426938)

'000000111': 3744, '111111001': 3741, '000000110': 568, '111111010': 560

remove_pair_count = 7

result: 16.94966819277659 (next closest result is: 12.97953319474692)

'111111001': 4722, '000000111': 4591, '000001000': 104, '111111000': 90

remove_pair_count = 8

result: 12.97953319474692 (next closest result is: 16.949668192776745)

'000001000': 3128, '111111000': 3056, '000000111': 1049, '111111001': 1029

